

3.5“ Terminal

Project Implementation

 Date of creation: 10.02.2014 Version date: 28.04.2016 Article number: XX-XXX-XXXX-E

Publisher: SIGMATEK GmbH & Co KG

A-5112 Lamprechtshausen

Tel.: 06274/4321

Fax: 06274/4321-18

Email: office@sigmatek.at

WWW.SIGMATEK-AUTOMATION.COM

Copyright © 2014

SIGMATEK GmbH & Co KG

Translation from German

All rights reserved. No part of this work may be reproduced, edited using an electronic system, duplicated or dis-

tributed in any form (print, photocopy, microfilm or in any other process) without the express permission.

We reserve the right to make changes in the content without notice. The SIGMATEK GmbH & Co KG is not responsi-

ble for technical or printing errors in the handbook and assumes no responsibility for damages that occur through

use of this handbook.

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 1

3.5” Terminal Project Implementation

This document serves as a guide for implementing projects on a 3.5" terminal.

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 2 28.04.2016

Contents

1 Basic Function ... 4

2 Settings in the CPU ... 5

3 Settings in the 3.5" Display .. 5

4 Creating a Class Project to Control a 3.5" Display 7

5 Creating a Screen Project to Show on the Display 9

6 Guidelines for using LSE Easy .. 12

7 Using Multiple Displays .. 14

7.1 Multiple Displays with the Same Visualization 14

7.2 Multiple Displays with Different Visualizations 15

7.3 Combined Operation .. 16

8 Loading Data for Multiple Displays with One Visualization
 .. 17

9 CAN Bus Protocol ... 20

9.1 SW Layer .. 20

9.2 CMD Layer ... 24

9.2.1 ComCMD_ALIVE PLC <=> HMI ... 24

9.2.2 ComCMD_UPDATE PLC <=> HMI ... 25

9.2.3 ComCMD_UPDATESTRING PLC => HMI.. 25

9.2.4 ComCMD_RESET PLC => HMI .. 26

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 3

9.2.5 ComCMD_RUN PLC => HMI .. 27

9.2.6 ComCMD_SCREEN PLC => RUN ... 27

9.2.7 ComCMD_BACKLIGHT PLC => HMI ... 28

9.2.8 ComCMD_BACKLIGHTDIM PLC => HMI ... 28

9.2.9 ComCMD_ASK_TEMP PLC => HMI .. 29

9.2.10 ComCMD_TEMP HMI => PLC .. 29

9.2.11 ComCMD_ASK_ALIVE PLC<=>HMI .. 30

9.2.12 ComCMD_ASK_ACTSCREEN PLC => HMI 30

9.2.13 ComCMD_ACTSCREEN HMI => PLC ... 31

9.2.14 ComCMD_ASK_FILE_CRC PLC => HMI ... 31

9.2.15 ComCMD_FILE_CRC HMI => PLC .. 32

10 Command Examples ... 33

11 EasyMap.txt ... 35

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 4 28.04.2016

1 Basic Function

The display communicates with the CPU via the CAN bus. A visualization will be created
using the LASAL Screen Editor, which will then be loaded to the CPU (files to the CPU).

The LSEEasy class establishes communication with the display. The selected project is
then loaded. The class checks whether the project in the display matches the project in the
control. If they differ, the class automatically sends the project to the display in which it is
then saved. This process can be observed in the StateSvr of the LSEEasy class.

While downloading, the display shows the following: The UPLOAD PROJECT bar shows
the progression of the download. The UNDER CONSTRUCTION bar runs continuously.
This can however, sometimes remain at one location since the program is then written in
memory of the display.

Next, the visualization is started. If the project is the same, the visualization is started im-
mediately.

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 5

2 Settings in the CPU

 autoexec.lsl :SET CAN 1 BAUD 1 STATION 0

3 Settings in the 3.5" Display

Press SETUP button!

CanNode : setting.

CanBaud : setting

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 6 28.04.2016

Touch: serves as touch test

RET: Return to main menu

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 7

4 Creating a Class Project to Control a 3.5" Display

 Create a network and place the following objects. Set the CanInterface (1 .. Can1, 2 ..
Can2).

 Set the CanNodeDisplay (CanNode, which was defined in the display setup).

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 8 28.04.2016

 In the ProjectPath client, an initial value must also be entered. This value depends on
the path over which the visualization should be loaded into the display. This setting will
be required again later in the Screen project.

 The remaining clients and servers are not needed at the moment. For a description of
the client functions, call the help file of the class.

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 9

5 Creating a Screen Project to Show on the Display

 Create a new project.

 Select 320x240 for the resolution.

 For the compiler format, set: LSE Easy.

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 10 28.04.2016

 Press the Finish button

 Open the project settings.

 Change to the Target tab.

 Select the check box Shrink font.

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 11

 Depending on how the ProjectPath client is initialized in the Class project, the Target
Path should now be changed in the Settings.

 Close the settings with the OK button.

 Finished!

 The visualization can now be created.

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 12 28.04.2016

6 Guidelines for using LSE Easy

 Only screens and global screens are available. No windows or objects can be used.

 Up to Firmware version 1.29, the user has 20 screens available; starting with FW ver-
sion 1.30, 40 screens are available.

 Data servers can only be displayed by their own CPU (Reference To Varia-
bles\Connection Settings => internal),

 Units can be used, conversion possible starting with LSE Easy 1.19. Digits, Position of
Decimal Point and Unit Text can be used.

 Use bitmaps that are as small as possible. Implementing an image with 200x100 is
impractical when it will be used with 100x50. The terminal has little memory space.
Maximal 256 Images/Files.

 Only specific button frames are available.

 Z-order on the screen is considered.

 Language conversion is possible. If the language is converted, the visualization is au-
tomatically resent from the PLC to the display; since not all text can be displayed in all
languages due to memory space. The display then restarts automatically with the visu-
alization output.

 Multiple displays are possible. The same visualization can be shown on several
displays. An individual visualization can also be created and shown on each display.
Combined operation is also possible (see point 7).

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 13

 When turned on, the SIGMATEK setup screen can be replaced by a bitmap. For this
purpose, simply create an image with the name bootloader or in the derivation of
LseEasy, used the name defined in the GetBootimage() function. To then access the
setup, press the lower right corner while the boot image is running.

 An overload function is provided to display the same visualization for different Class
objects (see point 8).

 String Editor is available starting with display FW 1.30.

 Real number values CANNOT be correctly displayed.

 No color schemes (only Unit, Font, Text and Image schemes)

 Image alignment for buttons hard-coded to CENTER/CENTER

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 14 28.04.2016

7 Using Multiple Displays

Each display must be configured separately (CanNode, CanBaud). For each display, an
individual object of the HmiComPortCan and LseEasy classes is required. The CanNode
setting of the display must be set to the client of the appropriate object (CanNodeDisplay).

7.1 Multiple Displays with the Same Visualization

A visualization is created for the display. In the project settings, a path is defined under the
menu item Target Path.

For example: C:\Easy1\ => ProjectPath =1 for all four displays

This is then configured in the objects of the LseEasy class. The setting in the ProjectPath
client is identical for all objects.

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 15

7.2 Multiple Displays with Different Visualizations

Four different visualizations are created. Each display contains a different visualization. In
the project settings of each visualization, a different path is set under the item Target Path.

For example:

C:\Easy1\ => ProjectPath =1 for visualization 1 on display 1

C:\Easy2\ => ProjectPath =2 for visualization 2 on display 2

C:\Easy3\ => ProjectPath =3 for visualization 3 on display 3

C:\Easy4\ => ProjectPath =4 for visualization 4 on display 4

These are now set in the objects of the LseEasy class. The ProjectPath client is now con-
figured for to the corresponding visualization.

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 16 28.04.2016

7.3 Combined Operation

The above display options can be easily combined. Two different visualizations are created
and displayed on two screens each. In the project settings, the two visualizations are as-
signed different paths under the item Target Path.

For example:

C:\Easy1\ => ProjectPath =1 for visualization 1 on display 1 and 3

C:\Easy2\ => ProjectPath =2 for visualization 2 on display 2 and 4

These are now set in the objects of the LseEasy class. The ProjectPath client is now con-
figured for to the corresponding visualization.

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 17

8 Loading Data for Multiple Displays with One Visualization

Each display must be configured separately (CanNode, CanBaud).

For each display, an individual object of the HmiComPortCan and LseEasy classes is re-
quired. The CanNode setting of the display must be set to the client of the appropriate ob-
ject (CanNodeDisplay).

A visualization is created for all displays. In the project settings, a path is defined under the
menu item Target Path.

For example: C:\Easy1\ => ProjectPath =1 for all four displays

This is then configured in the objects of the LseEasy class. The setting in the ProjectPath
client is identical for all objects.

To show different data on each display, the OverloadLight client was added to the LseEasy
class. The default value is -1. Value range 0 to 99.

If a number is entered, all Object.Servers in the variables list are searched while loading the
project. If the character string XX is found anywhere, it is replaced with the number defined
in the client; whereby the number is always formatted for 2 digits.

Example: OverLoadLight client is initialized with 9.

ObjectXX.SetValue => is converted to Object09.SetValue.

Object.TempXXMax => converted to Object.Temp09Max.

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 18 28.04.2016

There are now four displays on which the same visualization should be run, however, with
different data. This can be solved as follows:

Class in LASAL2 : Room .ActValue (Server)

 .SetValue (Server)

 .MotorDown (Server)

 .MotorUp (Server)

Objects in LASAL2: Room01, Room02, Room03, Room04

When the objects imported into the screen, the objects Room02, Room03 and Room04 are
deleted. The object Room1 must be renamed RoomXX.

The servers of the RoomXX object can now be used.

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 19

In the LASAL2 project the OverloadLight client must be configured as follows:

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 20 28.04.2016

9 CAN Bus Protocol

Basically, the protocol is divided into two layers.

SW Layer

Prepares the data to send (to the HMI) for the CAN bus and sends it to the CAN interface.

Prepares the received data (from the HMI) from the CAN bus and sends it the CMD layer
(see point 9.1).

CMD Layer

Maps the individual commands (see point 9.2).

9.1 SW Layer

In the CMD layer, the command is assembled. These data are then transferred to the SW
layer using a SendData method, which sends the data via the CAN bus. The answers are
again received from this layer and analyzed accordingly, assembled and resent to the
CMD layer.

The following object number are used:
 #define CAN_TX_OBJECT 0x020
 #define CAN_RX_OBJECT 0x040

The CAN node of the display must be added to these ID's

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 21

Basically, there are 4 different packet types:

 Acknowledge

#define ID_ACK_MESSAGE 0x7E 1 byte

Example:
 unsigned char tmp;

 tmp = ID_ACK_MESSAGE;

 CanSend(tmp, 1);

 Single Pack Message

This is the case if the command stream is less than or equal to 7 bytes. A remote station
answers each single pack message with Acknowledge. Only after the Acknowledge is re-
ceived, is the command accepted by the remote station.

The following data stream configuration is required.

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 22 28.04.2016

Example:
 if(mydatalengt <= 7)

 {

 unsigned char tmp[8];

 tmp[0] = mydatalength | 0x80; // userdatalänge + MSB=1

 memcpy(&tmp[1], mydata, mydatalength); // userdata

 CanSend(tmp, 8); // send

// WaitForAcknowledgeWithTimeout(); // wait for Acknowledge

from the remote station

 }

 Multi Pack Message Header

If the command stream is greater than 7 bytes, the data must be divided into multiple pack-
ets. The first of these packets must then be formatted as follows: This command is then
answered from a remote station with Acknowledge. Only after the Acknowledge is received,
is the command accepted by the remote station.

#define ID_HEADER_MESSAGE 0x7A 8 bytes

Example:
 if(mydatalength > 7)

 {

 unsigned char tmp[8];

 tmp[0] = ID_HEADER_MESSAGE;

(unsigned long)&tmp[1] = (mydatalength + 6) / 7; // number

of following packets

(unsigned long)&tmp[4] = mydatalength; // total length of

the user data in bytes

 CanSend(tmp, 8);

// WaitForAcknowledgeWithTimeout(); // wait for Acknowledge

from the remote station

 }

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 23

 Multi Pack Message

Packets with a length of 8 bytes (7-byte payload data) are sent until the last packet is
reached, which can have a length of 1 – 7 bytes. If the number of packets is greater than 8,
the remote station returns Acknowledge after the 8th packet. Only after this confirmation
has been received, can the next packet then be sent (otherwise the last 8 packets must be
repeated). The last packet does not have to consist of 7 bytes. This depends on how many
bytes are remaining. After the last packet, the remote station also returns Acknowledge.
Once the Acknowledge is received, the data is successfully transferred.

Data packet (0..n-1)

CNT => PaketIndex (0..7)

Example:
 unsigned char tmp[8];

tmp[0] = idx; // Packet index (0-7)

 memcpy(tmp[1], mydata, 7); //

 CanSend(tmp, 8);

Data packets (n)

CNT => PaketIndex (0..7)

Example:
 unsigned char tmp[8];

tmp[0] = idx; // Packet index (0-7)

 memcpy(tmp[1], mydata, 3); //

 CanSend(tmp, 4);

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 24 28.04.2016

9.2 CMD Layer

All commands and data types for the HMI are defined in the MiniSrcData.h file for the pro-
gram application.

The most important commands are described below, all others require specialized
knowledge and should not be used.

9.2.1 ComCMD_ALIVE PLC <=> HMI

This command is a so-called Alive signal and signals the respective receiver to the pres-
ence (functionality) of the sender. This command can be sent from the HMI to the PLC as
well as from the PLC to the HMI. The PLC should send data to the HMI every 1000 ms via
the CAN bus. This command should be sent if no data is currently available to send to the
HMI. Otherwise, an offline message appears in the HMI, which indicates that the PLC is
missing.

The command requires no additional parameters.

#define ComCMD_ALIVE 0x66 1 byte

Example:
 unsigned char cmd = ComCMD_ALIVE;

DataSend(&cmd, 1); // Call SW layer

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 25

9.2.2 ComCMD_UPDATE PLC <=> HMI

The Update command exchanges values between the PLC and HMI.

Using an ID created by LSE, the value of the corresponding server on the
display can be changed. This command can also be run in both directions. Changes in the
actual values are sent to the HMI and thereby communicated to the PLC by confirming
value changes in the HMI.

It should be noted that values sent with this command are processed as signed 32-bit val-
ues. This means the only values from -2,147,483,648 to +2,147,483,647 are allowed.

#define ComCMD_UPDATE 0x10 7 bytes

Example:
 unsigned char tmp[7];

 tmp[0] = ComCMD_UPDAT;

 (unsigned short)&tmp[1] = varid;

 (unsigned short)&tmp[3] = value;

DataSend(tmp, 7); // Call SW layer

9.2.3 ComCMD_UPDATESTRING PLC => HMI

The UpdateString command is only available in one direction, since strings can only be
changed but not entered. Using the ID, it is assigned to the appropriate server. Only
Unicode strings are processed; ASCII strings must be converted accordingly.

#define ComCMD_UPDATESTRING 0x11 5 - n bytes

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 26 28.04.2016

Example:
 unsigned long textlen;

 unsigned short uni_string [10];

 uni_string[0] = 'H';

 uni_string[1] = 'e';

 uni_string[2] = 'l';

 uni_string[3] = 'l';

 uni_string[4] = 'o';

 uni_string[5] = 0;

 unsigned char tmp[255]

 tmp[0] = ComCMD_ALIVE;

(unsigned short)&tmp[1] = id; // id of variable

textlen = (StrLenUni(uni_string) + 1) * sizeof(unsigned

short);

 memcpy(&tmp[3], uni_string, textlen);

DataSend(&tmp, textlen + 3); // Call SW layer

9.2.4 ComCMD_RESET PLC => HMI

Used to put the display into RESET status.

#define ComCMD_RESET 0x21 1 byte

Example:
 unsigned char cmd = ComCMD_RESET;

DataSend(&cmd, 1); // Call SW layer

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 27

9.2.5 ComCMD_RUN PLC => HMI

Used to put the display into RUN status.

#define ComCMD_RUN 0x22 1 byte

Example:
 unsigned char cmd = ComCMD_RUN;

DataSend(&cmd, 1); // Call SW layer

9.2.6 ComCMD_SCREEN PLC => RUN

The command is used to change the screen on the display from the PLC.

#define ComCMD_SCREEN 0x24 3 bytes

Example:
 unsigned char cmd[3] ;

 cmd[0] = ComCMD_SCREEN;

(unsigned short)&cmd[1] = screen number;

DataSend(&cmd, 3); // Call SW layer

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 28 28.04.2016

9.2.7 ComCMD_BACKLIGHT PLC => HMI

Allows the display backlighting to be turned on/off when one does not want to use the inte-
grated function (see ComCMD_BACKLIGHTTIME).

#define ComCMD_BACKLIGHT 0x26 2 bytes

Example:
 unsigned char cmd[2] ;

 cmd[0] = ComCMD_SCREEN;

 cmd[1] = 1; // cmd[1] = 0;

DataSend(&cmd, 2); // Call SW layer

9.2.8 ComCMD_BACKLIGHTDIM PLC => HMI

This command can be used to adjust the brightness of the backlighting (value 0 ... 100 %,
whereby 0 % does not turn it off). To turn off the display, use the ComCMD_BACKLIGHT
command.

#define ComCMD_BACKLIGHTDIM 0x30 2 bytes

Example:
 unsigned char cmd[2] ;

 cmd[0] = ComCMD_BACKLIGHTDIM;

cmd[1] = 70; // Backlight is set to 70%.

DataSend(&cmd, 2); // Call SW layer

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 29

9.2.9 ComCMD_ASK_TEMP PLC => HMI

Used to query the actual temperature of the display and then answers with the
ComCMD_TEMP command.

#define ComCMD_ASK_TEMP 0x50 1 byte

Example:
 unsigned char cmd ;

 cmd = ComCMD_ASK_TEMP;

DataSend(&cmd, 1); // Call SW layer

9.2.10 ComCMD_TEMP HMI => PLC

This is the answer to the query from the PLC (ComCMD_ASK_TEMP command). The cur-
rent temperature is returned in 1/10 °C.

#define ComCMD_TEMP 0x60 5 bytes

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 30 28.04.2016

9.2.11 ComCMD_ASK_ALIVE PLC<=>HMI

Can be sent from the PLC as well as the HMI. The ComCMD_ALIVE command must be
sent as an answer (see 9.2.1).

#define ComCMD_ASK_ALIVE 0x56 1 byte

Example:
 unsigned char cmd ;

 cmd = ComCMD_ASK_ALIVE;

DataSend(&cmd, 1); // Call SW layer

9.2.12 ComCMD_ASK_ACTSCREEN PLC => HMI

With this command, the currently displayed screen can be read. The answer is then re-
turned with the ComCMD_ACTSCREEN command.

#define ComCMD_ASK_ACTSCREEN 0x59 1 byte

Example:
 unsigned char cmd ;

 cmd = ComCMD_ASK_ACTSCREEN;

DataSend(&cmd, 1); // Call SW layer

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 31

9.2.13 ComCMD_ACTSCREEN HMI => PLC

This is the answer to the query from the PLC (ComCMD_ASK_ACTSCREEN command),
which returns the number of the currently displayed screen.

#define ComCMD_ACTSCREEN 0x2B 3 bytes

9.2.14 ComCMD_ASK_FILE_CRC PLC => HMI

Required to call the current CRC of the project stored on the display. This should be
checked before the variable update is started, since if the CRC is not identical to that in the
EasyMap.txt file, the ID may be different. The answer is returned as the
ComCMD_FILE_CRC command.

Theoretically, the server IDs can change after each LSE compiler process. For this reason,
the ID should not be written into the code, but assigned as a constant. To retrieve the pro-
ject CRC, 0 must be entered for the data.

#define ComCMD_ASK_FILE_CRC 0x54 3 bytes

Example:
 unsigned char cmd[2] ;

 cmd[0] = ComCMD_ASK_FILE_CRC;

cmd[1] = 0; // to retrieve the project CRC.

DataSend(&cmd, 2); // Call SW layer

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 32 28.04.2016

9.2.15 ComCMD_FILE_CRC HMI => PLC

This is the answer to the ComCMD_ASK_FILE_CRC, and returns the CRC of the current
project in the display.

#define ComCMD_FILE_CRC 0x64 5 bytes

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 33

10 Command Examples

 The ComCMD_ALIVE command should be sent.

The data, which must be sent via the CAN bus, appear as follows:

0x66 => ComCMD_ALIVE command (1-byte length)

0x81 => Single Pack Message (0x80 OR 0x01)

0x80 => Single Pack Message ID

0x01 => length of the ComCMD_ALIVE)

This means that these 2 bytes must be sent with the object number 0x20 + CanNode dis-
play.

The remote station answers with an Acknowledge. This is then received at the object num-
ber 0x40 + CanNode display and appears as follows:

1 byte was received. The content of the data is 0x75. This corresponds to the packet type
Acknowledge. ID_ACK_MESSAGE => 0x75

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 34 28.04.2016

 A value in the display should be updated. The ComCMD_UPDATE command is thereby
required. The variable with the ID : 5 should be changed.

The value of this variable should be changed to 150.

0x96 => value (150)

0x05 => server ID (5)

0x10 => ComCMD_UPDATE (7 bytes)

0x87 => Single Pack Message (0x80 OR 0x07)

0x80 => Single Pack Message ID

0x07 => length of ComCMD_UPDATE

This means that these 8 bytes must be sent with the object number 0x20 + CanNode.

The remote station answers with an Acknowledge. These are received in the object number
0x40 + CanNode and appears as follows.

1 byte was received. The content of the data is 0x75. This corresponds to the packer type
Acknowledge. ID_ACK_MESSAGE => 0x75

 PROJECT IMPLEMENTATION 3.5” TERMINAL

28.04.2016 Page 35

11 EasyMap.txt

This file creates the reference to the server used in the visualization (file format: regular
expression). This file is created by the LseEasy class and is found in the path on the PLC
set in the ProjectPath client.

[CRC] => Project check sum

3 .. server ID : Heating.actvalue

3.5” TERMINAL PROJECT IMPLEMENTATION

Page 36 28.04.2016

Documentation Changes

Change date Affected page(s) Chapter Note

28.04.2016 6 Guidelines for using LSE

Easy

FW Updates

	3.5“ Terminal
	Project Implementation
	3.5” Terminal Project Implementation
	1 Basic Function
	2 Settings in the CPU
	3 Settings in the 3.5" Display
	4 Creating a Class Project to Control a 3.5" Display
	5 Creating a Screen Project to Show on the Display
	6 Guidelines for using LSE Easy
	7 Using Multiple Displays
	7.1 Multiple Displays with the Same Visualization
	7.2 Multiple Displays with Different Visualizations
	7.3 Combined Operation

	8 Loading Data for Multiple Displays with One Visualization
	9 CAN Bus Protocol
	9.1 SW Layer
	9.2 CMD Layer
	9.2.1 ComCMD_ALIVE PLC <=> HMI
	9.2.2 ComCMD_UPDATE PLC <=> HMI
	9.2.3 ComCMD_UPDATESTRING PLC => HMI
	9.2.4 ComCMD_RESET PLC => HMI
	9.2.5 ComCMD_RUN PLC => HMI
	9.2.6 ComCMD_SCREEN PLC => RUN
	9.2.7 ComCMD_BACKLIGHT PLC => HMI
	9.2.8 ComCMD_BACKLIGHTDIM PLC => HMI
	9.2.9 ComCMD_ASK_TEMP PLC => HMI
	9.2.10 ComCMD_TEMP HMI => PLC
	9.2.11 ComCMD_ASK_ALIVE PLC<=>HMI
	9.2.12 ComCMD_ASK_ACTSCREEN PLC => HMI
	9.2.13 ComCMD_ACTSCREEN HMI => PLC
	9.2.14 ComCMD_ASK_FILE_CRC PLC => HMI
	9.2.15 ComCMD_FILE_CRC HMI => PLC

	10 Command Examples
	11 EasyMap.txt
	Documentation Changes

