

C-DIAS DMS Module

CAI 025

For two resistance bridges 2mV/V, 20mV/V

For each connector, a measurement bridge can be connected with a 4-wire cable in 2mV/V or 20mV/V resolution. The supply voltage for the bridge is 5V. The minimum resistance is 100Ω per bridge.

Technical Data

Input specifications

Number of channels	2 (4-wire connection)	
Measurement range	2mV/V or 20mV/V	
Measurement value	0 – 16000	
Resolution	14-bit	
Conversion time per channel	≤1ms	
Input filter	Cutoff frequency 1kHz (1ms)	Low pass 3 system
Supply voltage	5V / ±2,5%	
Maximum voltage supply capacity	100mA maximum, short circuit proof	
Analog measurement precision	±0,3% of maximum Measurement value	
Repeating accuracy	2mV/V ±0,3%	20mV/V ±0,2%
Linearity error	2mV/V ±0,6%	20mV/V ±0,2%

20.11.2023 Page 1

Electrical requirements

Power supply from C-DIAS bus	5V / +24V	
Current consumption of C-DIAS bus (+5V supply)	Typically 75mA	Maximum 100mA
Current consumption of C-DIAS bus (+24V supply)	Typically 140mA	Maximum 210mA

Miscellaneous

Article number	12-009-025	
Hardware version	1.x	
Standardization	UL (E247993)	

Environmental conditions

Storage temperature	-20 – +85°C		
Operating temperature	0 - +60°C		
Humidity	0 – 95%, uncondensed		
EMV stability	According to EN 61000-6-2:2001 (industrial area)		
Shock resistance	EN 60068-2-27	150m/s²	
Protection	EN 60529	IP 20	

Page 2a 20.11.2023

Mechanical Dimensions

20.11.2023 Page 3

Connector Layout

Page 4 20.11.2023

X1:

Pin	Assignment	
1	Bridge input 1-	
2	Bridge input 1+	
3	AGND	
4	+5V supply voltage	
5	Bridge input 1-	
6	Bridge input 1+	
7	AGND	
8	+5V supply voltage	

Bridge 2 mV/V

Bridge 20 mV/V

X2:

Pin	Assignment
1	Bridge input 2-
2	Bridge input 2+
3	AGND
4	+5V supply voltage
5	Bridge input 2-
6	Bridge input 2+
7	AGND
8	+5V supply voltage

Bridge 2 mV/V

Bridge 20 mV/V

Only one connector per measurement bridge is allowed. The minimum resistance per bridge is 100Ω .

Applicable connectors

X1, X2: 8-pin. Weidmüller plug B2L/B2CF 3,5/8

The complete C-DIAS CKL 046 connector set with spring terminals is available from Sigmatek under the article number 12-600-046.

20.11.2023 Page 5b

Wiring Guidelines

The signals recorded by the analog modules are very small, as compared to the digital signals. To ensure error-free operation, a careful wiring method must be followed:

- The DIN rail must have an adequate mass connection.
- The connection lines to the source of the analog signals must be as short as possible and parallel wiring to digital signal lines must be avoided.
- The signal lines must be shielded.
- The shielding should be connected to a shielding bus. If no shielding bus is available, the shield can also be clamped to the connectors (see below).

With 2mV/V Measurement Bridge Circuit

Connection diagram 1

Page 6a 20.11.2023

With 20mV/V Measurement Bridge Circuit

Connection diagram 2

20.11.2023 Page 7 a

Addressing

Address	RD/WR	Function / Bits	
\$00	RD16	14-bit reference voltage for the analog measurement value	
\$02	RD16	Analog measurement value, Channel 1; 14-bit	
\$04	RD16	Analog measurement value, Channel 2; 14-bit	
\$06	RD16	Analog measurement value, Channel 3; 14-bit	
\$08	RD16	Analog measurement value, Channel 4; 14-bit	
\$16	WR8	ADC-DAC configuration: Bit 7 Enable 10 V reference	
\$16	RD8	ADC-DAC Status: Bit 0 10 V reference OK	
, -		Bit 7 10 V reference enabled	
\$18	RD8	PLL status register Bit 1 = PLL online Bit 0 = PLL lock (PLL latched)	
\$19	RD8/WR8	PLL configuration register Bit 03: Period of the PLL base time in ms	
\$1A	RD8	Reserved	
\$1B	RD8	Xilinx Version	

Page 8 20.11.2023

Calibration data (the serial EEPROM is organized by bite)

Address	DATA	Description
\$00	\$xx	Check sum
\$01	123	Identification
\$02	5	Module group 5 = CAI
\$03	15	Module version
\$04	4	Number of channels
\$05	10	Hardware version \$10 = HW 1.0
\$06-\$3F	0	FILL
\$10		Serial number
		Al calibration data 0 – 10Vref
\$40	\$xxxx	Check sum
\$42	12345	Identification
\$44	16	Length of the following data blocks in WORD
\$46	4	Number of channels
\$48		Al0 Offset = Reference voltage at the time of calibration
\$4A		Al0 Multiplicand is not used
\$4C		Al0 Divisor is not used
\$4E		Al1 Offset
\$50		Al1 Multiplicand
\$52		Al1 Divisor
\$54		Al2 Offset
\$56		Al2 Multiplicand
\$58		Al2 Divisor
\$5A		Al3 Offset
\$5C		Al3 Multiplicand
\$5E		Al3 Divisor
\$60		Al4 Offset
\$62		Al4 Multiplicand
\$64		Al4 Divisor
\$66-\$FF	0	FILL

20.11.2023 Page 9a

Page 10 20.11.2023