

LASAL

OPC-UA-Connector

Date of creation: 26.08.2016 Version date: 21.10.2016 Article number: XX-XXX-XXX-E

Publisher: SIGMATEK GmbH & Co KG

A-5112 Lamprechtshausen

Tel.: 06274/4321

Fax: 06274/4321-18

Email: office@sigmatek.at

WWW.SIGMATEK-AUTOMATION.COM

Copyright © 2016

SIGMATEK GmbH & Co KG

Translation from German

All rights reserved. No part of this work may be reproduced, edited using an electronic system, duplicated or

distributed in any form (print, photocopy, microfilm or in any other process) without the express permission.

We reserve the right to make changes in the content without notice. The SIGMATEK GmbH & Co KG is not

responsible for technical or printing errors in the handbook and assumes no responsibility for damages that occur

through use of this handbook.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 1

Contents

LASAL .. 1

OPC-UA-Connector ... 1

1 OPC-UA Introduction .. 3

1.1 What is OPC-UA? .. 3

1.2 Contents of Delivery ... 3

1.3 Placement .. 3

1.4 Supported OPC UA Services ... 4

1.5 Supported OPC UA Features and Profiles 4

1.5.1 General ... 4

1.5.2 Data Access .. 4

1.5.3 Events ... 5

1.5.4 Methods .. 5

1.5.5 Alarms & Conditions ... 5

2 Lasal Project … Necessary First Steps 6

3 Simple Data Exchange .. 7

3.1 Principle ... 7

3.2 Implementing in the PLC Project .. 8

4 Configuration Using an XML File ... 10

4.1 General Structure.. 10

4.2 Example for OPC-UA Variables with 2 Configuration Files 12

LASAL OPC UA-CONNECTOR

Page 2 21.10.2016

5 Client Data Transfer with External OPC-UA Servers 14

6 OPC-UA Functions .. 20

6.1 Reading/Writing Variables ... 20

6.2 MonitoredItems ... 20

6.3 File Download .. 21

6.4 File Upload ... 21

7 OPC_UA Class ... 22

7.1 Interfaces ... 23

7.1.1 Servers.. 23

7.1.2 Clients ... 25

7.1.3 Global Methods ... 25

7.1.4 Private Methods .. 28

8 Win Program UaExpert ... 32

8.1 Setup Connection ... 32

8.2 Data exchange ... 35

8.3 Alarms .. 36

8.4 Events .. 36

8.5 File Transfer .. 37

8.5.1 File from Client (Win) to Server (PLC) .. 38

8.5.2 File from Server (PLC) to Client (Win) .. 39

Documentation Changes .. 40

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 3

1 OPC-UA Introduction

1.1 What is OPC-UA?

OPC Unified Architecture, short OPC-UA, is an industrial communication protocol.

As the newest of all OPC specifications of the OPC Foundation, OPC-UA differs considera-
bly from its predecessors, mainly in its capability to not only transfer but also machine-
readably semantically describe machine data (control variables, measurement values, pa-
rameters, etc.).

The OPC-UA participants can be controls, master computers, ERP systems, and many
others.

With the SIGMATEK OPC-UA class the following data can be transferred without much
programming effort:

 Transfer of simple data types: DINT, UDINT, REAL and STRING

 OPC-UA client data transfer to external OPC-UA servers

 File transfer from client to server and vice versa

1.2 Contents of Delivery

OPC-UA class and sticker

Article number OPC UA Embedded License (in the form of license sticker) 02-010-074

1.3 Placement

The license sticker has to be applied next to the type label of the hardware, where the
OPC-UA software is installed.

LASAL OPC UA-CONNECTOR

Page 4 21.10.2016

1.4 Supported OPC UA Services

 FindServer, GetEndpoints

 CreateSession, ActivateSession, CloseSession

 Browse, Translate

 Read

 Write

 CALL

 CreateSubscription, ModifySubscription, DeleteSubscription

 CreateMonitoredItems, ModifyMonitoredItems, DeleteMonitoredItems

 Publish, Republish

1.5 Supported OPC UA Features and Profiles

1.5.1 General

 Standard UA Server

1.5.2 Data Access

 DataAccess Server Facet

 ComplexType Server Facet

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 5

1.5.3 Events

 Basic Event Subscription Server Facet

 Address Space Notifier Server Facet

1.5.4 Methods

 Method Server Facet

1.5.5 Alarms & Conditions

 A&C Simple Server Facet

 A&C Address Space Instance Server Facet

 A&C Enable Server Facet

 A&C Alarm Server Facet

 A&C Acknowledgeable Alarm Server Facet

 A&C Exclusive Alarming Server Facet

 A&C Non-Exclusive Alarming Server Facet

LASAL OPC UA-CONNECTOR

Page 6 21.10.2016

2 Lasal Project … Necessary First Steps

A new Lasal project in the beginning is not able to establish OPC-UA communication.

 In each station that should work as an OPC-UA server first the described OPC-UA class
has to be imported and placed in a network.

 Additionally OPC-UA has to be enabled in the project!

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 7

3 Simple Data Exchange

This chapter deals with the exchange of base data types.

The normal data exchange in SIGMATEK systems is realized with server variables of one
or more classes.

Supported at the moment: DINT, UDINT, REAL and STRING

Accessing the SIGMATEK OPC-UA server is done via its endpoint Url.

For communication port 4842 is used.

Example for endpoint Url: opc.tcp://10.10.160.41:4842

3.1 Principle

 The user has to declare all OPC-UA variables in the PLC project as such. It makes
sense to create an own class for the OPC-UA variables and place it in a network. See
explanation for implementing below.

 All variables to be transferred are entered in a XML file. This is done fully automatically
by the SIGMATEK system! The XML file is transferred to the CPU while downloading
the project.

 When booting the PLC the OPC-UA server reads and interprets the XML file and from
this generates an OPC-UA address space.

 The OPC-UA server is available for the outside world, so an OPC-UA client can connect
to the server and read and write all OPC-UA variables and their properties.

LASAL OPC UA-CONNECTOR

Page 8 21.10.2016

3.2 Implementing in the PLC Project

As mentioned before, the normal data exchange in SIGMATEK systems is realized with
server variables (types DINT, UDINT, REAL and STRING).

The SIGMATEK system generates the OPC_UA.XML file for the OPC server.

Here the following requirements have to be met:

 in the properties of all desired servers the OPC attribute “Visible” has to be “true”

 the OPC attribute “WriteProtected” depends on the application

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 9

 in all instanced objects containing servers of OPC-UA data transfer, the attribute “OPC
UA Visible” has to be “true”

 transfer project to the PLC

The XML file is generated when compiling the program and transferred to the control only
with the download. When resetting/starting the CPU the file is neither created nor changed.

Now the OPC-UA client should be able to access the variables.

The program UaExpert can be used to test the program (see according chapter in this doc-
umentation).

LASAL OPC UA-CONNECTOR

Page 10 21.10.2016

4 Configuration Using an XML File

One (or more) user-specific configuration files are needed to inform the OPC UA server of
the corresponding data points (variables), including attributes and directories.

As mentioned before, Lasal Class 2 automatically generates the OPC_UA.XML file.

When downloading the project, this XML file is transferred to the CPU.

However, a manually generated XML file can help to enable extended functionality.

This XML file must be stored in the corresponding PLC, in which the OPC-UA server is
running. An OPC-UA client can only access data points configured this way!

As a default this file is named “OPC_UA.xml”, it is placed in the root directory of the control.
With overwriting the virtual method OPC_UA::FunctSetUp name and path can be changed.

4.1 General Structure

OPC_UA.XML

All configurations are mad in the "Config" tag. Here the sub tags "Trace", "Release", "Serv-
er" and "DataSet” are distinguished.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 11

Trace Element is optional. It defines the level for trace outputs. For possible values see the

class description OPC-UA, area server - TraceLevel.

Tag "Trace" attribute

TraceLevel defines the trace level for trace outputs

Release defines one or more shared directories for file up-/download

Tag "ReleasePath" attribute

Path defines the possible path(s) for file transfers

Servers Element is optional. It defines one or more “external” OPC-UA servers, that can be

accessed by the “own” OPC-UA class as clients.

See chapter “Client Data Transfer … "

DataSet defines the individual data points in the PLC with the corresponding attributes. OPC-UA

clients can access these data points!

Tag "DataElement" with attributes

Type (DINT, UDINT, REAL, STRING)

Hostname data element name to write

"Writeprotected" (true, false)

Physic user specific text - optional

Unit user specific text - optional

Folder user specific folder - optional

Label actual name of the data element (Object.Server)

There also are additional attributes for the definition of the nodes in the “external” OPC-

UA servers in case of the optional client data transfer.

See chapter “Client Data Transfer … "

LASAL OPC UA-CONNECTOR

Page 12 21.10.2016

4.2 Example for OPC-UA Variables with 2 Configuration Files

Config1.xml

Config2.xml

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 13

Address Space of the Server

The two configuration files shown above define the following address space:

LASAL OPC UA-CONNECTOR

Page 14 21.10.2016

5 Client Data Transfer with External OPC-UA Servers

This client function should not be confused with a full OPC-UA client.

It is possible to synchronize variable values of one or more external OPC-UA servers with
the data of the local OPC-UA server.

This client functionality is integrated in the OPC-UA class. Thus it is possible to access data
points of “external” OPC-UA clients reading or writing.

The configuration is also realized with a XML file.

Theoretically this configuration can be entered in the standard file (OPC_UA.xml) - but it is
not recommended because of a better overview.

During the boot phase the OPC-UA class also searches for the XML file for the client data
exchange.

The name is OPC_UA_Client.xml.

Example:

All configurations are mad in the "Config" tag. Hereby the sub tags "Server" and "DataSet”
are needed.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 15

Servers This element defines one or more “external” OPC-UA servers to be accessed by the

OPC-UA class as a client.

The tag “Endpoint” defines the connection properties to the external server.

Id unique identifier for the OPC-UA server

Url Url of the remote OPC-UA server

Endpoint end point of the connection to be used

Interval interval in [ms] for the cyclic data exchange

DataSet defines the individual data points in the PLC with the corresponding attributes.

Tag "DataElement" with attributes

The items in the first line are the same as those of the standard OPC-UA data points -

they define the variables of the own station:

Type (DINT, UDINT, REAL, STRING)

Hostname data element name to write

Writeprotected true = READING from an external station

false = WRITING to an external station

Physic [user specific text] - optional

Unit [user specific text] - optional

Folder [user specific folder] - optional

Label actual name of the data element (Object.Server)

The additional attributes in the second line serve for the definition of the nodes in the

external OPC-UA servers for the case of the optional client function:

NameSpaceIndex name space where the identifier of the node is located

IdentifierType type of the identifier ("Numeric" or "String")

Identifier unique ID (if "IdentifierType" = "Numeric")

Name of the identifier (if "IdentifierType" = "String")

Endpoint ID of the server connection to be used

(see sub tag "Server")

LASAL OPC UA-CONNECTOR

Page 16 21.10.2016

Note

The data synchronization of a variable can only work in one direction.

This is defined in the attribute “Writeprotected”.

Writeprotected="true" … data are read from the external server

Writeprotected="false" … data are written to the external server

Access to the data of the external server can be realized in two ways:

1: IdentifierType "Numeric"

= identify variable on the external server with unique identifier number

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 17

2: IdentifierType "String"

= identify variable on the external server with unique identifier name

The property "Numeric" or "String” have to be set accordingly on the REMOTE STATION!

In case of the SIGMATEK OPC-UA class this is done with the help of the client connection
“Config”.

For overview reasons, it is recommended to set all participants in the same way.

LASAL OPC UA-CONNECTOR

Page 18 21.10.2016

Example

In our example the same program with an OPC-UA server is running on two controls.

Because of the configuration in Lasal Class 2 this results in the following XML file:

One of the controls should also work as a client.

There additionally the file OPC_UA_Client.XML has to be created/stored manually.

The remote station (OPC-UA server) was named “Station-1”.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 19

After a reset/run of the client CPU the following data transfer runs:

… reading the OPC Var. ValueA of "Station-1" & saving in own OPC Var. SensorA

… reading the OPC Var. ValueB of "Station-1" & saving in own OPC Var. SensorB

… reading the own OPC Var. ValueC & saving in OPC Var. SensorC on "Station-1"

… reading the own OPC Var. ValueD & saving in OPC Var. SensorD on "Station-1"

LASAL OPC UA-CONNECTOR

Page 20 21.10.2016

6 OPC-UA Functions

6.1 Reading/Writing Variables

In this documentation reading and writing of variables has already be dealt with.

All servers of a LASAL project can be provided via configuration to the OPC UA server.
Through the configuration, which variables can be read or written by the user is set.

Currently, the data types DINT, UDINT, REAL and STRING.

Recommendation

Since access to the data entries from the OPC UA server cannot be triggered by user
specifications, an appropriate interface between the OPC UA server and PLC is
recommended.

6.2 MonitoredItems

For each OPC-UA variable that can be read by the client, a MonitoredItem can also be
created on the client side.

The monitoring of such items however works on the server side.

Recommendation

Each monitored item must be internally monitored by the server for changes, which in-
creases the load on the entire system.

There should only be as many MonitoredItems created as absolute necessary.

As rule, there is one trigger variable in the entire system. Using this variable, whether or not
data has changed can be detected (e.g. cycle counter).

A MonitoredItem should be created for this field, so that the client can be automatically
informed of changes by the server with an event. After a change trigger change, the client
read the changed data with a single read process.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 21

6.3 File Download

With this standard OPC-UA method, a single file can be sent from the OPC-UA client to the
OPC-UA server.

No background knowledge concerning the server application is needed.

CLIENT: StatusCode = DownloadFile([input]String Filename, [input]ByteString Data)

Filename Name, under which the file is stored for on the PLC. Optionally an absolute path can

be given with the file name. If no path is defined, the path "C:\OPCUA\” is used. When

entering an absolute path, it is validated according to the shared paths in the configura-

tion.

Only paths from the configuration and "C:\OPCUA” are valid.

Data Contains the file content in the form of a byte string.

StatusCode Return value indicates the success / failure of the method call.

6.4 File Upload

With this standard OPC-UA method, a single files can be read from the OPC-UA server and
sent to the OPC-UA client.

No background knowledge concerning the server application is needed.

CLIENT: StatusCode = UploadFile([input]String Filename, [output]ByteString Data)

Filename name, under which the file is searched for on the PLC. Optionally an absolute path can

be given with the file name. If no path is defined, the path "C:\OPCUA\” is used. When

entering an absolute path, it is validated according to the shared paths in the configura-

tion. Only paths from the configuration and "C:\OPCUA” are valid.

Data Contains the file content in the form of a byte string.

StatusCode Return value indicates the success / failure of the method call.

LASAL OPC UA-CONNECTOR

Page 22 21.10.2016

7 OPC_UA Class

For the functionality of the OPC-UA server an instance of this class has to be placed in a
network.

On program start an own thread is created, in which the OPC-UA server runs. No further
programming is necessary.

Only the existence of a configuration file (XML) is mandatory.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 23

7.1 Interfaces

7.1.1 Servers

ClassSrv progress for initialization (details are described below ...)

0 standard value at program start In this status, the "FunctSetUp" method is

called. It is expected, that additional XML configuration files are provided if

necessary ("AddXmlConfig" resp. "OPCUA_AddXmlConfig").

1 status after error free execution of the method "FunctSetUp"

Here the OPC-UA server is started ("OPCUA_ServerStart").

2
status after error free execution of the method "OPCUA_ServerStart"

Here the method "OPCUA_CyclicRun” is called.

ErrorCode error codes for eventually occurring errors (details described below ...)

0 no errors

-1 if the method "OPCUA_Init” has not been called as the first method

-2 call without previous initialization

- the "OPCUA_Init" method was not called

-3 call of the method "OPCUA_AddXmlConfig” after starting the server

- at this point in time, no more configuration changes are allowed

-4 call of the method "OPCUA_ServerStart” without calling the method

"OPCUA_AddXmlConfig” before

-5 internal error when starting the OPC-UA server (see log files)

-6 call of the method "OPCUA_CyclicRun” without calling the method

"OPCUA_ServerStart” before

-7 internal error during processing the OPC-UA protocol

(see log files)

-1001 configuration file does not exist

-1002 length of the configuration file could not be determined

-1003 contents of the configuration file could not be read

-1004 reading configuration file failed (incorrect structure)

LASAL OPC UA-CONNECTOR

Page 24 21.10.2016

Triggers A running counter, which is incremented with each internal cycle () and thereby

returns a status as to whether or not internal processing is active.

TraceLevel Shows the current trace level (details described below ...)

This server can also be written - so the TraceLevel can therewith be change via this

server during runtime.

OPCUA_TRACE_LEVEL_CONTENT

Data packet output (OPC UA protocol), including content

0x01

OPCUA_TRACE_LEVEL_DEBUG

... debug information via the internal process in the OPC UA server

0x02

OPCUA_TRACE_LEVEL_INFO

... expanded system information

0x04

OPCUA_TRACE_LEVEL_ERROR

... serious error

0x20

OPCUA_TRACE_LEVEL_WARNING

... system warnings

0x10

OPCUA_TRACE_LEVEL_SYSTEM

... infrequent system events (start, stop, connect, ...)

0x08

The tracing entries are written to a file - name: opc_log.txt

It is located on the control in the folder C:\sysmsg\

The single levels are bit masks and so can be combined bitwise.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 25

7.1.2 Clients

SigClib object channel to SigLib (connection is established automatically)

config Bit pattern for configuration

Bit 0 IdentifierType, 0="Numeric" / 1="String"

Bit 1 Reserve

Bit x Reserve

7.1.3 Global Methods

Init Initializing and creating the OPC_UA thread.

Background The class contains a Background method, which can be used in case the class is
derived. This method does not have to be activated and it has no influence on the
function of the class.

FunctStart Called once while starting the OPC UA server and signals the user that this service
was started.

FunctRun Called cyclically, if the service was started.

FunctEnd Called once when ending the OPC UA server.

FunctSetUp With this method, the OPC UA Server is declared the corresponding configuration
files (.XML). It is called once immediately after the start. Several different
configuration files can also be declared. This occurs through the function call.

OUT retcode 0= OK
otherwise error code (server is not started in this case!)

The base implementation here loads the standard configuration file
"OPC_UA.XML". So retcode complies to the return value of AddXmlConfig.

GetLasalId reads the unique Lasal ID for a desired server

IN label name of the server

OUT retcode unique Lasal ID

SetValue32 sets the value of a signed 32-bit server

IN lasalid unique Lasal ID

IN value new value

OUT retcode -1= general error
 0= access denied
 1= OK

SetValueU32 Equivalent to the "Setvalue32" method for the data type UDINT

SetValueF32 Equivalent to the "Setvalue32" method for the data type REAL

GetValue32 Reads the value of a signed 32-bit server

LASAL OPC UA-CONNECTOR

Page 26 21.10.2016

IN pvalue the read value is written to this address

IN lasalid unique Lasal ID

OUT retcode -1= general error
 1= OK

GetValueU32 Equivalent to the “Getvalue32" method for the data type UDINT

GetValueF32 Equivalent to the “Getvalue32" method for the data type REAL

GetString16Crc Returns the CRC value for the transferred Lasal ID

IN lasalid unique Lasal ID

OUT retcode CRC value

GetString16 Reads the contents of a server of the type STRING

IN pdst pointer to which the value should be written

IN max_chrlength maximum length of the string

IN lasalid unique Lasal ID

OUT retcode -1= general error
 1= OK

SetString16 Sets the value of a server of the type STRING

IN lasalid unique Lasal ID

IN pstr pointer to the new value

OUT retcode -1= general error
 0= access denied
 1= OK

CB_activateDS

CB_prepaireDS

The Callback (CB) “CB_activateDS” is called, if a client wants to transfer and
activate a data set to the control. This callback is used in the control program as a
trigger for reading and activating the desired settings data set.

The "f_CB_ prepaireDS" callback is called when a client requests a data set. This
callback is used in the control program as a trigger for providing desired settings
data set.

IN pID unique ID of the data set

IN pName name of the data set

IN pPath path, where the data set is located

OUT retcode 0= OK
otherwise error code

CB_alarmList The OPC UA server calls this function during initialization. With this method, the
OPC UA server requests the list of all active alarms.

OUT retcode reserved for future tasks, is not evaluated

CB_fileSystem This Callback is called, if a file changed.

IN typ type of the file change
(1= file new, 2= file deleted, 3 = file changed)

IN pPath path incl. file name and extension of the file

OUT retcode reserved for future tasks, is not evaluated

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 27

RemoteReadStatistic This method is called after each successful reading process on a remote server.

IN description describes the read remote server

IN count number of variables read without any errors

OUT retcode reserved for future tasks, is not evaluated

RemoteWriteStatistic This method is called after each successful writing process on a remote server.

IN description describes the written remote server

IN count number of variables written without any errors

OUT retcode reserved for future tasks, is not evaluated

RemoteReadError This method is called for each single variable, after its reading process on a
remote server failed.

IN description describes the read remote server

IN node describes the single variable on the remote server

IN status OPC-UA error code

OUT retcode reserved for future tasks, is not evaluated

RemoteWriteError This method is called for each single variable, after its writing process on a remote
server failed.

IN description describes the read remote server

IN node describes the single variable on the remote server

IN status OPC-UA error code

OUT retcode reserved for future tasks, is not evaluated

CurrentExternalServe
rStatus

This method is called with each status change of a remote server.

IN Id Id of the remote server

IN Url Url of the remote server

IN Endpoint end point of the remote server

IN status 0=OpcUa_Good
0x808A0000=OpcUa_BadNotConnected

OUT retcode reserved for future tasks, is not evaluated

SetParameter can be used to set process specific parameters

IN ParaNr parameter number

IN Value value to be set

OUT retcode 0 for success
-1 if the parameter could not be set

valid parameter:

OPC_UA_PAR_SET_DELAYTIME ... delay for the OPC_UA thread

NewSystemTime The method is called if an OPC-UA clients tries to set a new system time. If the
user wants to evaluate the system time, it can be overwritten. If this method is not
overwritten, it calls the private SetSystemTime method and assumes the system
time automatically.

LASAL OPC UA-CONNECTOR

Page 28 21.10.2016

SetTimeZoneOffset This method can be used for setting a time zone offset or a Summer Time offset.
This is necessary for calculating a valid UNIX time stamp from the current system
time. (The UNIX time stamp must always refer to UTC by definition.)

OpcUaThread OPC-UA services are processed in this thread.

IN pthis pointer to the own instance

7.1.4 Private Methods

OPC_UA Constructor initializes the OPC-UA interface

OUT ret_code ConfStates (ask SIGMATEK developer for more information)

AddXmlConfig reads a new/additional configuration file. So additional elements in the OPC-UA
address space are registered.

IN dpne path + file name + ext. where the data set is located

OUT retcode 0= OK
otherwise negative error code

SetValue Function executing the internal writing procedure of a server (see SetValue32,
SetValueF32, …)

IN lasalid unique Lasal ID

IN value new value

OUT retcode -1= general error
 0= access denied
 1= OK

GetValue function executing the internal reading procedure of a server (see GetValue32,
GetValueF32, …)

IN pvalue pointer to the read value

IN lasalid unique Lasal ID

OUT retcode -1= general error
 1= OK

AllActiveAlarms With this method, the list of active alarms can be sent to the OPC UA server. This
method must be called only once during the program start to initialize the list of
active alarms.

Together will all other alarm related functions, this call has to be executed
threadsafe.

IN alarmList pointer to the list of active alarms

IN listCount number of alarms in the list

OUT state 0

Via the "GetAllActiveAlarms" function, OPC UA clients can query the list of active
alarms.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 29

AlarmChanged With this method, a change in an alarm can be sent to the OPC UA server. Each
change of an alarm has to be reported. Both activation and deactivation of an
alarm. With this method, the list of the current alarms is kept up to date.

Together will all other alarm related functions, this call has to be executed
threadsafe.

IN alarm information about the changed alarm

OUT state 0

SetvalueF32Changed Equivalent to the "Setvalue32Changed" method for the data type "REAL".

SetvalueU32Changed Equivalent to the "Setvalue32Changed" method for the data type "UDINT".

Setvalue32Changed With this method, changes (of type DINT) to the settings data can be sent to the
OPC UA server.

Together will all other “Setvalue..Changes” functions, this call has to be executed
threadsafe.

IN change general properties of the parameter change

IN oldValue value before the change

IN newValue current value / value after the change

OUT state 0

Using OPC UA Event, OPC UA clients can be informed of changes in the settings
data.

DatasetActivationFini
shed

With this method, the OPC UA server can be informed when settings data is
activated.

IN status status of the activation (0: error free, !=0: error code)

IN datasetId unique Id of the transfer / data set

IN datasetName name of the settings data set

IN path path where the according file was saved

OUT state 0

Using OPC UA Event, OPC UA clients can be informed when settings data is
activated.

DatasetPreparationFi
nished

With this method, the OPC UA server can be informed that the preparation of a
data set for transmission to a client has been completed.

IN status status of the activation (0: error free, !=0: error code)

IN datasetId unique Id of the transfer / data set

IN datasetName name of the settings data set

IN path path where the according file was saved

OUT state 0

Using OPC UA Event, OPC UA clients can be informed when settings data has
been prepared. A client can then read the settings data via the “DownloadFile”,
method from the OPC UA server.

InitDatasetWorkingPa
th

With this method, the default path for operations with settings data for runtime can
be defined. This path is, in addition to paths from the configuration, valid for all file
operations. If this path is set, it is used as the default path for file operations

LASAL OPC UA-CONNECTOR

Page 30 21.10.2016

without path specifications. E.g.: If the DatasetWorkingPath was set to c:\datenset\,
the file is stored in the c:\datensatz\text.txt“ directory when UploadFile is called with
the "test.txt" parameter.

IN path default path specification

OUT retcode 0

InitAlarmCallback With this method, the OPC UA server can provided with a callback function. The
OPC UA server calls this function during initialization. With this method, the OPC
UA server requests the list of all active alarms.

IN f_CB_alarmList pointer to the Callback function

OUT retcode 0

InitDatasetCallback With this method, the OPC UA server can be provided with two callback functions.

IN f_CB_activateDS CallBack for activating settings data sets

f_CB_prepaireDS Callback for providing settings data sets

OUT retcode 0

The Callback (CB) "f_CB_activateDS” is called, if a client wants to transfer and
activate a data set to the control. This callback is used in the control program as a
trigger for reading and activating the desired settings data set.

The "f_CB_ prepaireDS" callback is called when a client requests a data set. This
callback is used in the control program as a trigger for providing desired settings
data set.

InitVersionId With this method, the OPC UA server can sent a unique ID (version number). This
ID can be later used for customer and control-specific implementations.

IN versionId unique identification of the control version

OUT retcode 0

SetTraceLevel With this method, the TraceLevel can be changed during runtime.

IN traceLevel TraceLevel to be used

OUT retcode 0

InitFileSystemCallbac
k

With this method, the OPC UA server can provided with a callback function.

IN f_CB_fileSystem Callback for FileSystem changes

OUT retcode 0

The "f_CB_fileSystem" callback is called when a client triggers a change in the file
system with a function call. All file functions (Upload File, Download File, Activate
Dataset, Prepare Dataset) for example, thereby trigger changes in the file system
and subsequently call this callback function.

SetOptions With this function option can be set that change the program sequence.

IN options USE:HOSTNAME-AS-BROWSENAME
USE:ALPHANUMERIC-IDENTIFIERS

OUT retcode 0

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 31

AlarmChangedUC Complies to the method "AlarmChanged". The difference is that strings in this
method are transferred as an array of 16-bit values. So any UniCode characters
can be transferred.

Together will all other alarm related functions, this call has to be executed
threadsafe.

IN alarm information about the changed alarm

OUT retcode 0

SetvalueStringChang
ed

Equivalent to the "Setvalue32Changed" method for the data type "CHAR".

Together will all other “Setvalue..Changes” functions, this call has to be executed

threadsafe.

IN change general properties of the parameter change

IN oldValue value before the change

IN newValue current value / value after the change

OUT state 0

SetvalueStringChang
edUC

Complies to the method "SetvalueStringChanged". The difference is that the input
parameter in this method is transferred as an array of 16-bit values. So any
UniCode characters can be transferred.

Together will all other “Setvalue..Changes” functions, this call has to be executed
threadsafe.

LASAL OPC UA-CONNECTOR

Page 32 21.10.2016

8 Win Program UaExpert

This program is not from SIGMATEK and not necessary for the real operation of an OPC-
UA communication.

But this tool can help in first commissioning.

8.1 Setup Connection

After the first start no project exists.

 Right click on “servers” in the section Project - click on “Add...”

continue on the next page ...

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 33

 here the entpoint URL has to be entered

opc.tcp://10.10.160.41:4842

… the IP address is that of the PLC
… the port is 4842 for SIGMATEK

LASAL OPC UA-CONNECTOR

Page 34 21.10.2016

 with a right click on the server and “Connect” the connection is established.

 now automatically the OPC-UA client requests the variable list from the OPC server and
displays it here.

The OPC server generates this variable list according to its own OPC XML file.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 35

8.2 Data exchange

The normal data exchange in SIGMATEK systems is realized with server variables.

Supported at the moment: DINT, UDINT, REAL and STRING

 in the area “AddressSpace” on the left side the variable list read from the PLC can be
found

 the value of the according variable can be found to the right under “Value”

 updating here is only done when selecting

 with Drag & Drop a variable can also be moved to the center view field

 variables placed here are updated cyclically

 the values can be changed

LASAL OPC UA-CONNECTOR

Page 36 21.10.2016

8.3 Alarms

For alarms OPC-UA provides a flexible alarm handling.

The base class cannot access the SIGMATEK alarms.

For this SIGMATEK provides an expanded OPC-UA class.

8.4 Events

For alarms OPC-UA provides a flexible event handling.

The base class cannot access the SIGMATEK events.

An expansion to also support this functionality is already planned.

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 37

8.5 File Transfer

A file transfer can be executed in both directions. But in both cases the client writes.

In the base class the server has no influence on the time of the transfer.

In the program UaExpert, these functions can be found on the left side in the section “Ad-
dress Space” in the entry “Dataset”.

LASAL OPC UA-CONNECTOR

Page 38 21.10.2016

8.5.1 File from Client (Win) to Server (PLC)

"Path" defines the target path on the PLC including the file name.

This path has to be entered in the PLC XML file in the section Release!

Default "C:\OPCUA\"

Without path definition the first DIR entered in the XML is used.

Data defines the source on the client.

An error indicates, that e.g. the OPC-UA DIR is missing on the PLC.

It is only possible to write to this DIR!

 LASAL OPC UA-CONNECTOR

21.10.2016 Page 39

8.5.2 File from Server (PLC) to Client (Win)

"Path" defines the source path on the PLC including the file name.

This path has to be entered in the PLC XML file in the section Release!

Default "C:\OPCUA\"

Without path definition the first DIR entered in the XML is used.

Data is written after pressing the Cal button and then can be saved in a file with “Save as”.

An error indicates, that e.g. the OPC-UA DIR is missing on the PLC.

It is only possible to read from this DIR!

LASAL OPC UA-CONNECTOR

Page 40 21.10.2016

Documentation Changes

Change

date

Affected

page(s)

Chapter Note

13.02.2015 2 1.1 Delivery

1.2 Placement

Delivery and placement added

26.06.2015 1 2 … configuration Description of Trace / TraceLevel

26.06.2015 3 3.2 Servers Description of the class servers

(ClassSvr, ErrorCode, Trigger, TraceLevel)

27.06.2015 1 3.1 Functions AllActiveAlarms

27.06.2015 1 3.1 Functions AlarmChanged

27.06.2015 1 3.1 Functions Setvalue32Changed, …

27.06.2015 1 3.1 Functions DatasetActivationFinished

27.06.2015 1 3.1 Functions DatasetPreparationFinished

27.06.2015 1 3.1 Functions InitDatasetWorkingPath

27.06.2015 1 3.1 Functions InitAlarmCallback

27.06.2015 1 3.1 Functions InitDatasetCallback

27.06.2015 1 3.1 Functions InitVersionId

27.06.2015 1 3.1 Functions SetTraceLevel

27.06.2015 1 3.1 Functions InitFileSystemCallback

27.06.2015 1 3.1 Functions CB_alarmList

28.06.2015 1 1.3 Supported OPC-UA

Services

Adapted

28.06.2015 1 1.4 Supported OBP-UA

Features and Profiles

Adapted

26.06.2016 3 1.3 Supported OPC-UA

Services

Adapted formatting

26.06.2016 5-8 2.0 Configuration with XML

File

To expand configuration possibilities for the access to

external OPC-UA servers

26.06.2016 18-19 4.5 Data Synchronization

between Different OPC-UA

Servers

Expanded with this new function

xx.08.2016 all all Documentation updated and expanded

21.10.2016 25, 27, 28 7.1.3 Global Methods Added methods

	LASAL
	OPC-UA-Connector
	1 OPC-UA Introduction
	1.1 What is OPC-UA?
	1.2 Contents of Delivery
	1.3 Placement
	1.4 Supported OPC UA Services
	1.5 Supported OPC UA Features and Profiles
	1.5.1 General
	1.5.2 Data Access
	1.5.3 Events
	1.5.4 Methods
	1.5.5 Alarms & Conditions

	2 Lasal Project … Necessary First Steps
	3 Simple Data Exchange
	3.1 Principle
	3.2 Implementing in the PLC Project

	4 Configuration Using an XML File
	4.1 General Structure
	4.2 Example for OPC-UA Variables with 2 Configuration Files

	5 Client Data Transfer with External OPC-UA Servers
	6 OPC-UA Functions
	6.1 Reading/Writing Variables
	6.2 MonitoredItems
	6.3 File Download
	6.4 File Upload

	7 OPC_UA Class
	7.1 Interfaces
	7.1.1 Servers
	7.1.2 Clients
	7.1.3 Global Methods
	7.1.4 Private Methods

	8 Win Program UaExpert
	8.1 Setup Connection
	8.2 Data exchange
	8.3 Alarms
	8.4 Events
	8.5 File Transfer
	8.5.1 File from Client (Win) to Server (PLC)
	8.5.2 File from Server (PLC) to Client (Win)

	Documentation Changes

