

DMS-Einsteckmodul

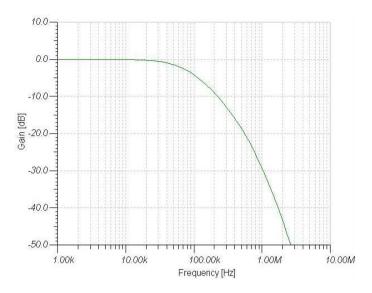
MSR 281

Dieses Eingangsmodul dient zur Messung der Dehnung oder Stauchung von Dehnmessstreifen mittels einer Messbrücke nach Wheatstone. Das Modul besitzt zwei Kanäle mit je einer kurzschlussfesten Brückenspeisespannung von 3,333 V. Der Messbereich der Messbrücke ist 3 mV/V. Andere Messbereiche ab 1,5 mV/V sind auf Anfrage lieferbar. Die Messbrücken können in 4- oder 6-Leitertechnik angeschlossen werden. Es besteht die Möglichkeit der Driftkorrektur (Nullung).

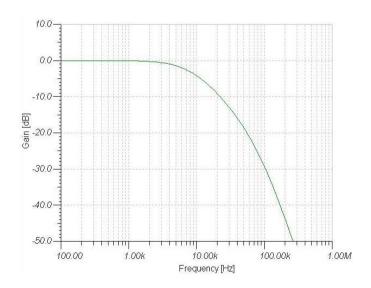
Am Diagnosestecker können die aufbereiteten Eingangssignale nachgemessen werden. Die Signale an den Diagnosesteckern dürfen ausschließlich für Diagnosezwecke verwendet werden und sind nicht kalibrierfähig.

Das DMS-Einsteckmodul MSR 281 ist mit dem Basismodul MSR 211 ab Hardwareversion 1.10 kompatibel!

Technische Daten


Die folgenden Angaben gelten in Zusammenhang mit dem Basismodul MSR 211.

Analogkanalspezifikation


Anzahl der Kanäle	2	
Speisespannung	3,333 V	
Messbereich	3 mV/V	
Brückenwiderstand	100 Ω5000 Ω	
Messbereich [Digit]	± 100.000	
Auflösung [Bit]	16	
Fühlerbrucherkennung	ja	
Eingangsfilter	8 kHz (-3dB)	
	-60 dB / Dekade	
Wandlungszeit pro Kanal	≤ 25 µs	
Gleichtaktbereich	1V2,3V	
Analogkanalmessgenauigkeit vom Endwert, 25 ℃	± 0,0565 % typisch	
Statusanzeige	ERROR (rot) (befindet sich auf der Basis)	
Wandler	Seriell SAR 18 Bit	
Galvanische Trennung	500 V DC	

Seite 2 09.05.2014

Eingangsfiltercharakteristik

Typischer Frequenzgang Gleichtakt

Typischer Frequenzgang Differenz

Analogkanalgenauigkeit

Genauigkeiten bezogen auf den Endwert.

Integrale Nichtlinearität	Typisch ±0,008 %	Maximal ±0,02 %
Rauschspannung	Typisch ±0,046 % ≙ 1,4 μV rms	Maximal ±0,056 % ≙ 1,7 μV rms
Übersprechen vom vorherigen Kanal -10 mV +10 mV	Typisch ±0,0025 %	Maximal ±0,0035 %
Temperaturgang		
0 ℃ +40 ℃ 0 ℃ +60 ℃	Typisch ±0,065 % Typisch ±0,15 %	Maximal $\pm 0.2 \%$ Maximal $\pm 0.45 \%$.
Gesamtfehler *1		
+25 ℃ 0 ℃ +40 ℃ 0 ℃ +60 ℃	Typisch ± 0.0565 % Typisch ± 0.1215 % Typisch ± 0.2065 %	Maximal ±0,0795 % Maximal ±0,2795 % Maximal ±0,5295 %
Widerstandseinfluss der Speiseleitung, $\Delta R = \pm 1\%$ des Brückenwiderstands		
4-Leiter-Messung 6-Leiter-Messung	Typisch ±1 % Typisch ±1 ppm	Maximal ±1 % Maximal ±3 ppm
Langzeitdrift 1000 h	Typisch ±0,007 %	

^{*1 -} Bei Anwendung der Driftkorrektur gilt bei allen Temperaturen die Angabe für 25°C.

Driftkorrektur

Über die Klasse kann der Eingang des Messverstärkers kurzgeschlossen werden. Damit kann der Offset des Messverstärkers gemessen und die folgenden Messwerte korrigiert werden. Temperaturfehler werden somit eliminiert.

Einschaltzeit *2	Typisch 80 ms	Maximal 120 ms
Ausschaltzeit ^{*3} Typisch 105 ms		Maximal 160 ms

^{*2 -} Zeit vom Auslösen der Driftkorrektur bis zum ersten gültigen Messwert für kurzgeschlossenen Eingang

Das Einschalten der Driftkorrektur muss separat für jeden Kanal innerhalb einer Basis mit einem minimalen Abstand von 100 ms erfolgen!

Seite 4a 09.05.2014

^{*3 -} Zeit vom Abschalten der Driftkorrektur bis zum ersten gültigen Messwert von der Messbrücke

Speisespannung

Nominalspannung +25 ℃	+3,333 V			
Grundgenauigkeit +25 ℃	Typisch ±0,05 % Maximal ±0, 3 %			
Temperaturgang				
0 ℃ +40 ℃ 0 ℃ +60 ℃	Typisch ±0,01 % Typisch ±0,025 %	Maximal ±0,03 % Maximal ±0,05 %		
Gesamtfehler				
0 ℃ +40 ℃ 0 ℃ +60 ℃	Typisch ±0,06 % Typisch ±0,075 %	Maximal ±0,33 % Maximal ±0,35 %		
Zusätzlicher Fehler bei Belas- tung				
$R_{Brücke} = 5 k\Omega$ $R_{Brücke} = 100 \Omega$	Typisch 0,0003 % Typisch 0,03 %	Maximal 0,0015 % Maximal 0,06 %		
Langzeitdrift 1000 h	Typisch ±0,007 %			
Maximale Belastung (pro Kanal)	35 mA			
Kurzschlussfest	Ja ^{'1}			

^{*1 -} für eine einwandfreie Funktion der übrigen Kanäle ist ein Kurzschluss für einen Kanal je Basis gleichzeitig erlaubt

Diagnosestecker

Spannungsbereich bei Kabelbruch	-5V +5 V (≙ -10 mV +10 mV) ca. +14 V
Belastbarkeit	10 mA
Kurzschlussfest	Ja

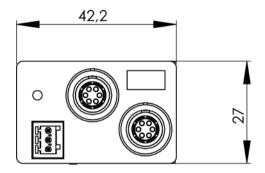
Sonstiges

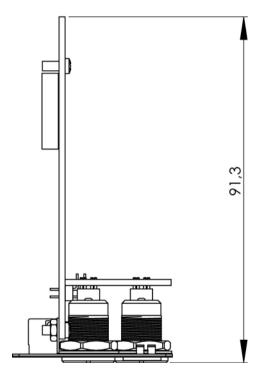
Artikelnummer	18-001-281
Hardwareversion	1.x

Umgebungsbedingungen

·		
Lagertemperatur	-30℃ +85℃	
Betriebstemperatur	℃00+ ℃	
Luftfeuchtigkeit	0 95 %, nicht kondensierend	
EMV-Festigkeit	Nach EN 61000-6-2:2001 (Industriebereich)	
Schockfestigkeit	EN 60068-2-27	150 m/s²
Schutzart	EN 60529	IP 00

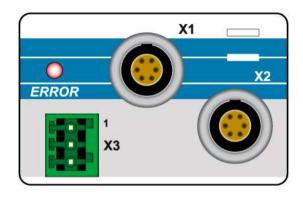
ACHTUNG:

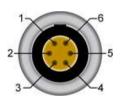

Um die Genauigkeit der Karte über einen langen Zeitraum garantieren zu können, ist es notwendig, jährlich die Bauteilalterung zu kompensieren. Dies kann durch einen Werksabgleich oder eine Kalibrierung erfolgen.


Wenn die Alterung der Karte keinen großen Einfluss auf die Applikation hat, kann auf die jährliche Kalibrierung verzichtet werden. Die spezifizierte Genauigkeit wird dann seitens SIGMATEK jedoch nicht mehr garantiert.

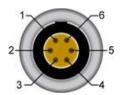
Weiters ist mit einer mindestens 10-minütigen Aufwärmphase zu rechnen!

Seite 6 09.05.2014


Mechanische Abmessungen



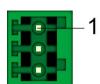
Anschlussbelegung



X1: AI 1 Lemo 6-pol. (EGG.1B.306.CLN)

Pin	Funktion
1	Analogeingang 1+
2	Analogeingang 1-
3	Speisespannung 1+
4	AGND
5	Fühler Speisespannung 1+
6	Fühler AGND

X2: Al 2 Lemo 6-pol. (EGG.1B.306.CLN)


Pin	Funktion
1	Analogeingang 2+
2	Analogeingang 2-
3	Speisespannung 2+
4	AGND
5	Fühler Speisespannung 2+
6	Fühler AGND

Seite 8 09.05.2014

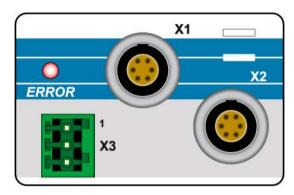
X3: Diagnose

Phoenix 3-pol. (MC0,5/3-G-2,5THT)

Pin	Funktion
1	Analogeingang 1
2	Analogeingang 2
3	AGND

Zu verwendende Steckverbinder

X1 - X2: LEMO FGG.1B.306.CLADxx **X3:** PHOENIX FK-MC 0,5/3-ST-2,5


Zu verwendender Verbindermarkierer

Weidmüller MultiFit MF 10/5 MC CABUR Bestellnummer: 1854510000

Statusanzeige

LED-Nr.	LED-Farbe	Bedeutung
1	Rot	Überstrom bzw. Kurzschluss der Speisespannung

Seite 10 09.05.2014

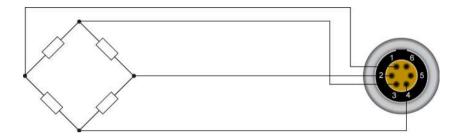
Verdrahtungshinweise

Die vom Analogmodul erfassbaren Signale sind im Vergleich zu den digitalen Signalen sehr klein. Um eine einwandfreie Funktion zu gewährleisten, ist eine sorgfältige Leitungsführung unbedingt einzuhalten.

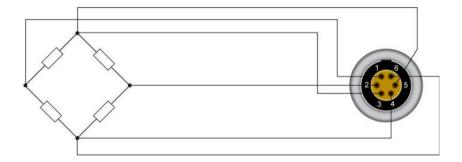
- Der 0 V-Anschluss der Versorgungsspannung muss auf k\u00fcrzestem Weg zum 0 V-Sammelpunkt gef\u00fchrt werden.
- Die Verbindungsleitungen zu den analogen Eingängen müssen so kurz wie möglich und unter Vermeidung von Parallelführung zu digitalen Signalleitungen geführt werden.
- Die Leitungen sollten paarweise geschirmt geführt werden.

Messungen mit Wheatstonescher Messbrücke

Im Allgemeinen ist eine Kalibrierung der Baugruppe mit der installierten Messbrücke notwendig, um alle Ungenauigkeiten des Gesamtsystems abzugleichen. Diese sind vor allem die Grundgenauigkeit der Messbrücke, der Offset der Messbrücke sowie die Widerstände der Zuleitungen.


Üblicherweise werden in Messbrücken 1, 2 oder alle 4 Widerstände veränderlich ausgeführt. Die Genauigkeit einer Messbrücke resultiert unter anderem daraus, dass in allen Fällen die Eigenschaften der Widerstände sehr ähnlich sind (z.B. Temperaturverhalten, Alterung).

Sollte ein einzelner Widerstand (Dehnmessstreifen) für die Messung verwendet werden, müssen die übrigen Widerstände extern entsprechend folgender Schemata angeschlossen werden.


4-Leiter-Schaltung

Die 4-Leiter-Schaltung kann bei kurzen Zuleitungen verwendet werden, wenn der Widerstand der Messbrücke groß ist und keine wesentlichen Veränderungen des Widerstands der Zuleitungen zu erwarten sind. Man beachte die Temperaturabhängigkeit von Kupfer (ca. 0,39% · K⁻¹).

6-Leiter-Schaltung

Die 6-Leiter-Schaltung empfiehlt sich grundsätzlich immer, jedoch besonders bei kleinen Brückenwiderständen und hohen Genauigkeitsanforderungen.

Seite 12 09.05.2014