

# PW 161

## S-DIAS Pulse Width Module

**Instruction Manual** 

Date of creation: 25.02.2015

Version date: 26.07.2023

Article number: 20-030-161-E

Publisher: SIGMATEK GmbH & Co KG A-5112 Lamprechtshausen Tel.: +43/6274/4321 Fax: +43/6274/4321-18 Email: office@sigmatek.at WWW.SIGMATEK-AUTOMATION.COM

> Copyright © 2015 SIGMATEK GmbH & Co KG

#### **Translation of the Original Instructions**

All rights reserved. No part of this work may be reproduced, edited using an electronic system, duplicated or distributed in any form (print, photocopy, microfilm or in any other process) without the express permission.

We reserve the right to make changes in the content without notice. The SIGMATEK GmbH & Co KG is not responsible for technical or printing errors in the handbook and assumes no responsibility for damages that occur through use of this handbook.

## S-DIAS Pulse Width Module

#### with 16 valve outputs

The S-DIAS PW 161 pulse width module has 16 valve outputs for valves with a starting current of up to 1 A and a 0.5 A stopping current. The 16 valve outputs are divided into two supply groups of 8 outputs each. Each supply group provides a current measurement for the switch point detection of the valve.

The supply voltages are monitored for under voltage.



## **PW 161**



## Contents

| 1 Introduction |         | action5                                        |
|----------------|---------|------------------------------------------------|
|                | 1.1     | Target Group/Purpose of this Operating Manual5 |
|                | 1.2     | Important Reference Documentation5             |
|                | 1.3     | Contents of Delivery5                          |
| 2              | Basic S | Safety Directives6                             |
|                | 2.1     | Symbols Used6                                  |
|                | 2.2     | Disclaimer8                                    |
|                | 2.3     | General Safety Directives9                     |
|                | 2.4     | Software/Training10                            |
| 3              | Standa  | Irds and Directives11                          |
|                | 3.1     | Directives11                                   |
|                | 3.1.1   | EU Conformity Declaration11                    |
| 4              | Туре Р  | late12                                         |
| 5              | Techni  | cal Data13                                     |
|                | 5.1     | Valve Output Specifications13                  |
|                | 5.2     | Electrical Requirements14                      |
|                | 5.3     | Voltage Monitor16                              |
|                | 5.4     | Miscellaneous16                                |
|                | 5.5     | Environmental Conditions16                     |
| 6              | Mecha   | nical Dimensions17                             |

| 7  | Conne  | ctor Layout                                                    | 18 |
|----|--------|----------------------------------------------------------------|----|
|    | 7.1    | Status LEDs                                                    | 19 |
|    | 7.2    | Applicable Connectors                                          | 19 |
|    | 7.3    | Label Field                                                    | 20 |
| 8  | Wiring |                                                                | 21 |
|    | 8.1    | Wiring Example                                                 | 21 |
|    | 8.1.1  | 16 Valves with 1 A Starting Current and 0.5 A Stopping Current | 21 |
|    | 8.1.2  | 8 Valves with 1 A Starting Current and 1 A Stopping Current    | 22 |
|    | 8.2    | Output Scheme                                                  | 23 |
|    | 8.3    | Note                                                           | 23 |
| 9  | Assem  | bly/Installation                                               | 24 |
|    | 9.1    | Check Contents of Delivery                                     | 24 |
|    | 9.2    | Mounting                                                       | 25 |
| 10 | Addres | ssing                                                          | 27 |
| 11 | Suppo  | rted Cycle Times                                               | 32 |
|    | 11.1   | Cycle Times below 1 ms (in µs)                                 | 32 |
|    | 11.2   | Cycle Times equal to or above 1 ms (in ms)                     | 32 |
| 12 | Transp | oort/Storage                                                   | 33 |

S-DIAS PULSE WIDTH MODULE

PW 161

13

SIGMATEK

| PW <sup>·</sup> | 161 S  | -DIAS PULSE WIDTH MODULE        | \Sigma SIGMATEK |
|-----------------|--------|---------------------------------|-----------------|
|                 | 14.1   | Service                         |                 |
|                 | 14.2   | Repair                          |                 |
| 15              | Dispos | al                              | 34              |
| 16              | Hardwa | are Class PW161                 | 35              |
|                 | 16.1   | Interfaces                      |                 |
|                 | 16.1.1 | Clients                         | 37              |
|                 | 16.1.2 | 2 Servers                       |                 |
|                 | 16.1.3 | Communication Interfaces        |                 |
|                 | 16.2   | Global Methods                  |                 |
|                 | 16.2.1 | SetOutput                       |                 |
|                 | 16.2.2 | 2 ResetOutput                   |                 |
|                 | 16.2.3 | 8 WriteGroupOutput              | 40              |
|                 | 16.2.4 | ChangePWMSettings               | 40              |
|                 | 16.2.5 | 5 StartMeasure                  | 41              |
|                 | 16.2.6 | GetMeasureState                 | 42              |
|                 | 16.3   | Software Configuration          |                 |
|                 | 16.4   | Current History Recording       |                 |
|                 | 16.4.1 | Analysis of the Measured Values | 44              |
|                 | 16.4.2 | 2 Testing the Setting Values    | 45              |

## **1** Introduction

## 1.1 Target Group/Purpose of this Operating Manual

This operating manual contains all information required for the operation of the product.

This operating manual is intended for:

- Project planners
- Technicians
- Commissioning engineers
- Machine operators
- Maintenance/test technicians

General knowledge of automation technology is required.

Further help and training information, as well as the appropriate accessories can be found on our website <u>www.sigmatek-automation.com</u>.

Our support team is happily available to answer your questions. Please see our website for our hotline number and business hours.

## **1.2 Important Reference Documentation**

This and additional documents can be downloaded from our website or obtained through support.

#### 1.3 Contents of Delivery

1x PW 161



## 2 Basic Safety Directives

#### 2.1 Symbols Used

The following symbols are used in the operator documentation for warning and danger messages, as well as informational notes:

#### DANGER



**Danger** indicates that death or serious injury **will occur**, if the specified measures are not taken.

⇒ To avoid death or serious injuries, observe all guidelines.

**Danger** indique une situation dangereuse qui, faute de prendre les mesures adéquates, **entraînera** des blessures graves, voire mortelles.

⇒ Respectez toutes les consignes pour éviter des blessures graves, voire mortelles.

#### WARNING



**Warning** indicates that death or serious injury **can** occur, if the specified measures are not taken.

 $\Rightarrow$  To avoid death or serious injuries, observe all guidelines.

**Avertissement** d'une situation dangereuse qui, faute de prendre les mesures adéquates, **entraînera** des blessures graves, voire mortelles.

⇒ Respectez toutes les consignes pour éviter des blessures graves, voire mortelles.

#### CAUTION



**Caution** indicates that moderate to slight injury **can** occur, if the specified measures are not taken.

⇒ To avoid moderate to slight injuries, observe all guidelines.

Attention indique une situation dangereuse qui, faute de prendre les mesures adéquates, **peut** entraîner des blessures assez graves ou légères.

⇒ Respectez toutes les consignes pour éviter des blessures graves, voire mortelles.





## INFORMATION

### Information

⇒ Provides important information on the product, handling or relevant sections of the documentation, which require attention.



#### 2.2 Disclaimer

## INFORMATION

The contents of this operating manual were prepared with the greatest care. However, deviations cannot be ruled out. This operating manual is regularly checked and required corrections are included in the subsequent versions. The machine manufacturer is responsible for the proper assembly, as well as device configuration. The machine operator is responsible for safe handling, as well as proper operation.

The current operating manual can be found on our website. If necessary, contact our support.

Subject to technical changes, which improve the performance of the devices. The following operating manual is purely a product description. It does not guarantee properties under the warranty.

Please thoroughly read the corresponding documents and this operating manual before handling a product.

SIGMATEK GmbH & Co KG is not liable for damages caused through, non-compliance with these instructions or applicable regulations.

#### 2.3 General Safety Directives

The Safety Directives in the other sections of this operating manual must be observed. These instructions are visually emphasized by symbols.

#### **INFORMATION**



According to EU Directives, the operating manual is a component of a product.

This operating manual must therefore be accessible in the vicinity of the machine since it contains important instructions.

This operating manual should be included in the sale, rental or transfer of the product, or its online availability indicated.

Regarding the requirements for Safety and health connected to the use of machines, the manufacturer must perform a risk assessment in accordance with machine directives 2006/42/EG before introducing a machine to the market.

Operate the unit with devices and accessories approved by SIGMATEK only.



## CAUTION

Handle the device with care and do not drop or let fall.

Prevent foreign bodies and fluids from entering the device.

The device must not be opened!

Manipulez l'appareil avec précaution et ne le laissez pas tomber.

Empêchez les corps étrangers et les liquides de pénétrer dans l'appareil.

L'appareil ne doit pas être ouvert!

If the device does not function as intended or has damage that could pose a danger, it must be replaced!

En cas de fonctionnement non conforme ou de dommages pouvant entraîner des risques, l'appareil doit être remplacé!

The module complies with EN 61131-2.

In combination with a facility, the system integrator must comply with EN 60204-1 standards.

For your own safety and that of others, compliance with the environmental conditions is essential.

Le module est conforme à la norme EN 61131-2.

En combinaison avec une équipement, l'intégrateur de système doit respecter la norme EN 60204-1.

Pour votre propre sécurité et celle des autres, le respect des conditions environnementales est essential.

#### 2.4 Software/Training

The application is created with the software LASAL CLASS 2 and LASAL SCREEN Editor.

Training for the LASAL development environment, with which the product can be configured, is provided. Information on our training schedule can be found on our website.

## **3** Standards and Directives

#### 3.1 Directives

The product was constructed in compliance with the following European Union directives and tested for conformity.

#### 3.1.1 EU Conformity Declaration

EU Declaration of Conformity

The product PW 161 conforms to the following European directives:

- 2014/35/EU Low-voltage Directive
- 2014/30/EU Electromagnetic Compatibility (EMC Directive)
- **2011/65/EU** "Restricted use of certain hazardous substances in electrical and electronic equipment" (RoHS Directive)

The EU Conformity Declarations are provided on the SIGMATEK website. See Products/Downloads or use the search function and the keyword "EU Declaration of Conformity".



## 4 Type Plate

|                | HW: X.XX<br>SW: XX.XX.XXX<br>Safety Version: SXX.XX.XX             |  |
|----------------|--------------------------------------------------------------------|--|
| Serial No.     | SIGMATEK GMBH & CO KG<br>Sigmatekstrasse 1 A-5112 LAMPRECHTSHAUSEN |  |
| Article Number | Product Name Short Name                                            |  |

## Exemplary nameplate (symbol image)

|              | HW: 1.00<br>SW: 01.00.000<br>Safety Version: S01.00.00             |  |
|--------------|--------------------------------------------------------------------|--|
| 12345678     | SIGMATEK GMBH & CO KG<br>Sigmatekstrasse 1 A-5112 LAMPRECHTSHAUSEN |  |
| 12-246-133-3 | Handbediengerät Wireless HGW 1033-3                                |  |

HW: Hardware version

SW: Software version

## 5 Technical Data

## 5.1 Valve Output Specifications

| Number                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Execution                                             | GND switching                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Short-circuit proof                                   | yes <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Maximum starting current/channel                      | 1 A                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Maximum stopping<br>current/channel                   | 0,5 A (1 A <sup>(2)</sup> )                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Maximum total current/group                           | 4 A                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Brake voltage during shutdown                         | 39 V                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Maximum braking energy of<br>outputs (inductive load) | maximum 1 Joule/for all channels<br>maximum 0.25 Joules/channel                                                                                                                                                                                                                                                                                                                                                                         |  |
| Turn-on delay                                         | 100 $\mu s$ can be set through the software in 0-255 increments                                                                                                                                                                                                                                                                                                                                                                         |  |
| Excitation time                                       | 100 $\mu s$ can be set through the software in 0-255 increments                                                                                                                                                                                                                                                                                                                                                                         |  |
| PWM frequency                                         | 20 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Current measurement/group                             | 0-1.4 A<br>10-bit ADC<br>100 μs conversion time                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Derating variants <sup>(3)</sup>                      | <ul> <li>50 % switch-on time<sup>(4)</sup> of all channels, 100 % simultaneity of all channels, 100 % of the maximum stopping current per channel.</li> <li>100 % switch-on time of all channels, 50 % simultaneity of all channels, 100 % of the maximum stopping current per channel.</li> <li>100 % switch-on time of all channels, 100 % simultaneity of all channels, 50 % of the maximum stopping current per channel.</li> </ul> |  |

<sup>(1)</sup> Short-circuit proof since HW version 1.3 since FPGA version 1.1 and firmware version 1.42 with connector cables  $\geq$  1 m and cable diameters  $\leq$  1.5 mm<sup>2</sup> for the supply and the valve outputs of the module. The short circuit current is limited by the stated specification of the connector cables, so that damage to the output is prevented.

<sup>(2)</sup> A stopping current of up to 1 A is allowed, as long as the total current/group is not exceeded. With a stopping current > 0.5 A only every second output can be used, so that there is an even heat distribution in the module, which guarantees reliable functionality of the module up to the maximum ambient temperature.  $\rightarrow$  see 4.1. Wiring Examples

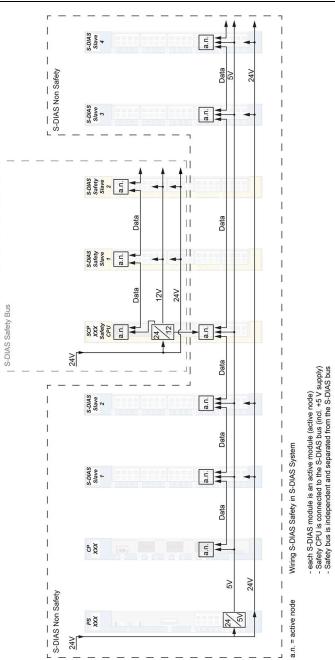
<sup>(3)</sup> To avoid exceeding the maximum loss of the S-DIAS modules one of the derating variants mentioned above must be used. The derating can be achieved by a 50 % switch-on time of all channels, 50 % simultaneity of all channels or a reduction of the stopping current to 50 % of the maximum stopping current. The stopping ratio of 3 valves were measured and calculated using the maximum braking energy of the number of switching cycles:

 1.)
 Valve
 MAC
 BV210A-CB0=-00-BEBA-CTA

 Braking energy/switching at 0.8 A stopping current: 2 mJ
 => 500 switching cycles per module per second possible

 2.)
 Valve
 MAC
 GET0

 Braking energy/switching at 0.2 A stopping current: 4.2 mJ
 => 238 switching cycles per module per second possible


 3.)
 Valve
 MPVZ
 1018

Braking energy/switching at 0.2 A stopping current: 3.2 mJ => 313 switching cycles per module per second possible <sup>(4)</sup> Intermittent periodic duty with 50% switch-on time (based on of 5 seconds).



## 5.2 Electrical Requirements

| Supply voltage of valve +UV /1-2                              | 18-52                                        | 2 V DC        |
|---------------------------------------------------------------|----------------------------------------------|---------------|
| Current consumption of valve<br>supply +UV /1-2               | corresponds to the load on the valve outputs |               |
| Voltage supply from S-DIAS bus                                | +2                                           | 4 V           |
| Current consumption on the<br>S-DIAS bus (+24 V power supply) | typically 45 mA                              | maximum 50 mA |



SIGMATEK

Í

5

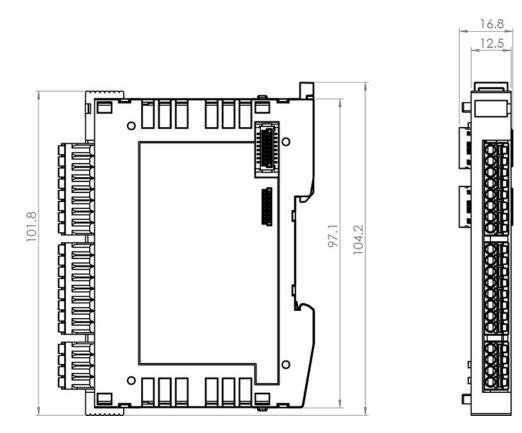


## 5.3 Voltage Monitor

| Supply voltage of valve +UV /1-2 | supply voltage > 18 V (corresponding DC OK-LED lights green) |
|----------------------------------|--------------------------------------------------------------|
|----------------------------------|--------------------------------------------------------------|

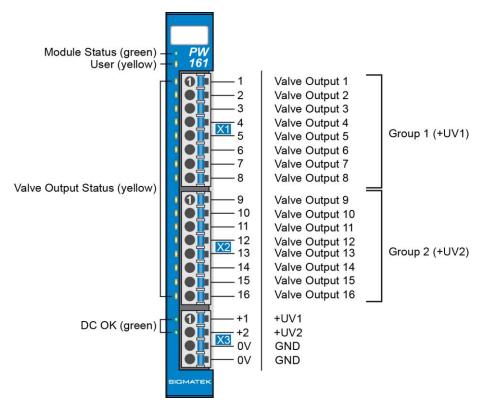
## 5.4 Miscellaneous

| Article number | 20-030-161        |
|----------------|-------------------|
| Standard       | UL 508 (E247993)  |
| Approbations   | UL, cUL, CE, UKCA |


## 5.5 Environmental Conditions

| Storage temperature             | -20 +85 °C                                                                                              |                     |
|---------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|
| Environmental temperature       | 0 +55 ℃                                                                                                 |                     |
| Humidity                        | 0-95 %, nor                                                                                             | n-condensing        |
| Installation altitude above sea | 0-2000 m without derating                                                                               |                     |
| level                           | $>$ 2000 m with derating of the maximum environmental temperature by 0.5 $^{\circ}\mathrm{C}$ per 100 m |                     |
| Operating conditions            | Pollution degree 2<br>altitude up to 2000 m                                                             |                     |
| EMC resistance                  | in accordance with EN 61000-6-2:2007 (industrial area)                                                  |                     |
| EMC noise generation            | eneration in accordance with EN 61000-6-4 (industrial area)                                             |                     |
| Vibration resistance            | EN 60068-2-6 3.5 mm from 5-8.4 Hz                                                                       |                     |
|                                 |                                                                                                         | 1 g from 8.4-150 Hz |
| Shock resistance                | EN 60068-2-27                                                                                           | 15 g                |
| Protection type                 | EN 60529 IP20                                                                                           |                     |

둘 SIGMATEK


## 6 Mechanical Dimensions







## 7 Connector Layout



### INFORMATION



The GND supply (X3: Pin 3 and Pin 4) is internally bridged. Only one GND pin (pin 3 or pin 4) is required to power the module. The bridged connections may be used for further looping of the GND supply. However, it must be taken into account that a total current of 6 A per connection is not exceeded by the forward looping!

#### 7.1 Status LEDs

| Module Status | green  | ON              | module active                                                               |
|---------------|--------|-----------------|-----------------------------------------------------------------------------|
|               |        | OFF             | no supply available                                                         |
|               |        | BLINKING (5 Hz) | no communication                                                            |
| User          | yellow | ON              | can be set from the application                                             |
|               |        | OFF             | (e.g. the module LED can be set to blinking through the                     |
|               |        | BLINKING (2 Hz) | visualization so that the module is easily found in the control<br>cabinet) |
|               |        | BLINKING (4 Hz) |                                                                             |
| Valve Output  | yellow | ON              | valve output ON                                                             |
| Status        |        | OFF             | valve output OFF                                                            |
| DC OK         | green  | ON              | the corresponding output group is powered                                   |

#### 7.2 **Applicable Connectors**

#### **Connectors:**

X1-X3: Connectors with spring terminals (included in delivery) The spring terminals are suitable connecting ultrasonically compacted (ultrasonically welded) strands.

#### Connections:

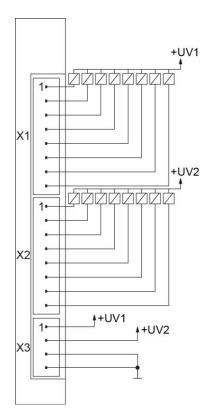
| Stripping length/Sleeve length:                                           | 10 mm                                                             |
|---------------------------------------------------------------------------|-------------------------------------------------------------------|
| Plug-in direction:                                                        | parallel to conductor axis or to PCB                              |
| Conductor cross section, rigid:                                           | 0.2-1.5 mm <sup>2</sup>                                           |
| Conductor cross section, flexible:                                        | 0.2-1.5 mm <sup>2</sup>                                           |
| Conductor cross section, ultrasonically compacted:                        | 0.2-1.5 mm <sup>2</sup>                                           |
| Conductor cross section AWG/kcmil:                                        | 24-16                                                             |
| Conductor cross section flexible, with ferrule without plastic<br>sleeve: | 0.25-1.5 mm <sup>2</sup>                                          |
| Conductor cross section flexible, with ferrule with plastic sleeve:       | 0.25-0.75 mm <sup>2</sup> (ground for reducing d2 of the ferrule) |



d2 = max. 2.8 mm

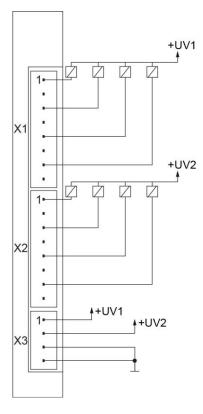


## 7.3 Label Field



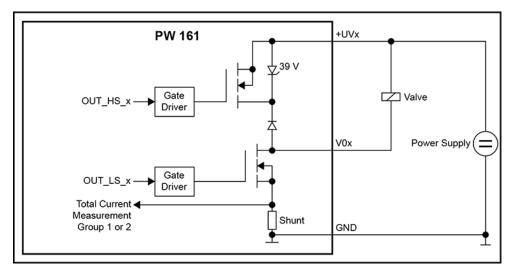

| Manufacturer              | Weidmüller             |
|---------------------------|------------------------|
| Туре                      | MF 10/5 CABUR MC NE WS |
| Weidmüller article number | 1854510000             |
|                           |                        |
| Compatible printer        | Weidmüller             |
| Туре                      | Printjet Advanced 230V |
| Weidmüller article number | 1324380000             |

둘 SIGMATEK


## 8 Wiring

- 8.1 Wiring Example
- 8.1.1 16 Valves with 1 A Starting Current and 0.5 A Stopping Current






## 8.1.2 8 Valves with 1 A Starting Current and 1 A Stopping Current



둘 SIGMATEK

### 8.2 Output Scheme



#### 8.3 Note

#### **INFORMATION**

i

Connect the ground bus to the control cabinet.

The S-DIAS module CANNOT be connected/disconnected while voltage is applied!

In order to keep the voltage ripple at the PW 161 module supply within the permissible range (< 2 Vpp) during PWM operation of the valves with long supply lines (due to line resistance and line inductance), it may be necessary to connect an external capacitor as close as possible to the module supply for the PWM outputs.

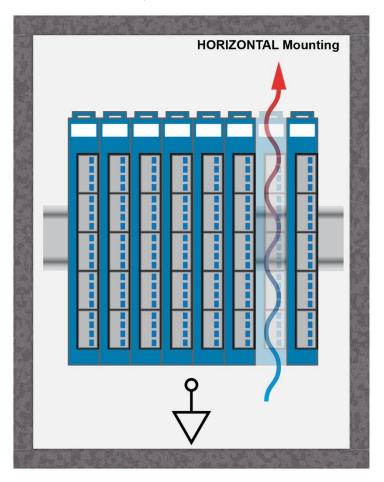


## 9 Assembly/Installation

### 9.1 Check Contents of Delivery

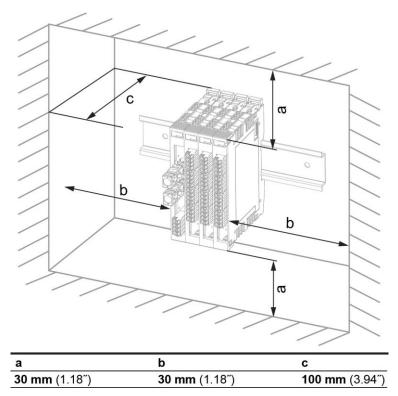
Ensure that the contents of the delivery are complete and intact. See chapter 1.3 Contents of Delivery.

#### **INFORMATION**




On receipt and before initial use, check the device for damage. If the device is damaged, contact our customer service and do not install the device in your system.

Damaged components can disrupt or damage the system.


## 9.2 Mounting

The S-DIAS modules are designed for installation into the control cabinet. To mount the modules a DIN-rail is required. The DIN rail must establish a conductive connection with the back wall of the control cabinet. The individual S-DIAS modules are mounted on the DIN rail as a block and secured with latches. The functional ground connection from the module to the DIN rail is made via the grounding clamp on the back of the S-DIAS modules. The modules must be mounted horizontally (module label up) with sufficient clearance between the ventilation slots of the S-DIAS module blocks and nearby components and/or the control cabinet wall. This is necessary for optimal cooling and air circulation, so that proper function up to the maximum operating temperature is ensured.





Recommended minimum distances of the S-DIAS modules to the surrounding components or control cabinet wall:



a, b, c ... distances in mm (inches)

## 10 Addressing

| Address<br>(hex) | Size<br>(bytes) | Access Type | Description                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000             | 128             | W           | Cyclic Data for Firmware (mem-address range)                                                                                                                                                                                                                                                                                                                          |
| 0000             | 1               | W           | PWM output μC1         Bit 0       Output 1, group 1         Bit 1       Output 2, group 1         Bit 2       Output 3, group 1         Bit 3       Output 5, group 1         Bit 4       Output 5, group 1         Bit 5       Output 6, group 1         Bit 6       Output 7, group 1         Bit 7       Output 8, group 1                                        |
| 0001             | 8               | w           | Enable / disable time delay output 1-8 (0 to 25000 µs)<br>Bit 07 enable time delay [100 µs] / disable time delay<br>=> depends on the output status:<br>Status = 1 => time delay on<br>Status = 0 => time delay off                                                                                                                                                   |
| 0009             | 1               | W           | PWM output μC2           Bit 0         Output 9, group 2           Bit 1         Output 10, group 2           Bit 2         Output 11, group 2           Bit 3         Output 12, group 2           Bit 4         Output 13, group 2           Bit 5         Output 14, group 2           Bit 6         Output 15, group 2           Bit 7         Output 16, group 2 |
| 000A             | 8               | W           | Enable / disable time delay output 9-16 (0 to 1000 µs)<br>Bit 07 enable time delay [100 µs] / disable time delay<br>=> depends on the output status:<br>Status = 1 => time delay on<br>Status = 0 => time delay off                                                                                                                                                   |
| 0080             | 128             | r           | Cyclic Data for the HW Class (mem-address range)                                                                                                                                                                                                                                                                                                                      |
| 0080             | 2               | r           | Status µC1<br>Bit 0 tbd<br>Bit 1 not synchronized<br>Bit 2 FLASH data CRC error<br>Bit 3 RAM data CRC error<br>Bit 4 non Safe FLASH data<br>Bit 5 Overload (current consumption too high)                                                                                                                                                                             |



|      |   |   | Status µC2                                                                                                                                        |
|------|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0082 | 2 | r | Bit 0tbdBit 1not synchronizedBit 2FLASH data CRC errorBit 3RAM data CRC errorBit 4non Safe FLASH dataBit 5Overload (current consumption too high) |

| 0100 | 128                                       | r/w                | CFG for the Firmware (mem-address range)                                  |  |  |  |  |  |  |  |
|------|-------------------------------------------|--------------------|---------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 0100 | 2                                         | r/w                | CRC16 (length depends on the command, start at 0104)                      |  |  |  |  |  |  |  |
| 0102 | 2                                         | r/w                | Data length (depending on the command)                                    |  |  |  |  |  |  |  |
|      |                                           |                    | Info (special purpose or status bits)                                     |  |  |  |  |  |  |  |
| 0104 | 1                                         | r/w                | Bit 0 PMB mode<br>0 normal Mode<br>1 PMB mode, value preset with RAW data |  |  |  |  |  |  |  |
|      |                                           |                    | Bit 1 boot loader / update request                                        |  |  |  |  |  |  |  |
|      |                                           |                    | Bit 2 – 6 reserve                                                         |  |  |  |  |  |  |  |
|      |                                           |                    | Bit 7 Toggle bit for achieving a CRC change                               |  |  |  |  |  |  |  |
| 0105 | 1                                         | r/w                | Command Type                                                              |  |  |  |  |  |  |  |
|      | Standard Module (info register bit 0 = 0) |                    |                                                                           |  |  |  |  |  |  |  |
|      | Command                                   | byte = 0           |                                                                           |  |  |  |  |  |  |  |
|      | Channel c                                 | onfiguration       |                                                                           |  |  |  |  |  |  |  |
| 0105 | PWM ratio                                 |                    | 0 100 = 0 % 100 %                                                         |  |  |  |  |  |  |  |
|      | Starting pr                               | ocess duration     | 1 255 = 100 μs 25500 μs                                                   |  |  |  |  |  |  |  |
|      | PWM ratio                                 | during starting pr | rocess 0 100 = 0 % 100 %                                                  |  |  |  |  |  |  |  |
| 0106 | 1                                         | r/w                | PWM ratio output 1 group 1                                                |  |  |  |  |  |  |  |
| 0107 | 1                                         | r/w                | arting process duration output 1 group 1                                  |  |  |  |  |  |  |  |
| 0108 | 1                                         | r/w                | Arting process duration output 1 group 1                                  |  |  |  |  |  |  |  |
| 0109 | 1                                         | r/w                | PWM ratio output 2 group 1                                                |  |  |  |  |  |  |  |
| 010A | 1                                         | r/w                | Starting process duration output 2 group 1                                |  |  |  |  |  |  |  |
| 010B | 1                                         | r/w                | PWM ratio during starting process output 2 group 1                        |  |  |  |  |  |  |  |
| 010C | 1                                         | r/w                | PWM ratio output 3 group 1                                                |  |  |  |  |  |  |  |
| 010D | 1                                         | r/w                | Starting process duration output 3 group 1                                |  |  |  |  |  |  |  |
| 010E | 1                                         | r/w                | PWM ratio during starting process output 3 group 1                        |  |  |  |  |  |  |  |
| 010F | 1                                         | r/w                | PWM ratio output 4 group 1                                                |  |  |  |  |  |  |  |
| 0110 | 1                                         | r/w                | Starting process duration output 4 group 1                                |  |  |  |  |  |  |  |
| 0111 | 1                                         | r/w                | PWM ratio during starting process output 4 group 1                        |  |  |  |  |  |  |  |
| 0112 | 1                                         | r/w                | PWM ratio output 5 group 1                                                |  |  |  |  |  |  |  |
| 0113 | 1                                         | r/w                | Starting process duration output 5 group 1                                |  |  |  |  |  |  |  |
| 0114 | 1                                         | r/w                | PWM ratio during starting process output 5 group 1                        |  |  |  |  |  |  |  |

#### PW 161



| 0115 | 1 | r/w | PWM ratio output 6 group 1                          |
|------|---|-----|-----------------------------------------------------|
| 0116 | 1 | r/w | Starting process duration output 6 group 1          |
| 0117 | 1 | r/w | PWM ratio during starting process output 6 group 1  |
| 0118 | 1 | r/w | PWM ratio output 7 group 1                          |
| 0119 | 1 | r/w | Starting process duration output 7 group 1          |
| 011A | 1 | r/w | PWM ratio during starting process output 7 group 1  |
| 011B | 1 | r/w | PWM ratio output 8 group 1                          |
| 011C | 1 | r/w | Starting process duration output 8 group 1          |
| 011D | 1 | r/w | PWM ratio during starting process output 8 group 1  |
| 011E | 1 | r/w | PWM ratio output 9 group 2                          |
| 011F | 1 | r/w | Starting process duration output 9 group 2          |
| 0120 | 1 | r/w | PWM ratio during starting process output 9 group 2  |
| 0121 | 1 | r/w | PWM ratio output 10, group 2                        |
| 0122 | 1 | r/w | Starting process duration output 10 group 2         |
| 0123 | 1 | r/w | PWM ratio during starting process output 10 group 2 |
| 0124 | 1 | r/w | PWM ratio output 11, group 2                        |
| 0125 | 1 | r/w | Starting process duration output 11 group 2         |
| 0126 | 1 | r/w | PWM ratio during starting process output 11 group 2 |
| 0127 | 1 | r/w | PWM ratio output 12, group 2                        |
| 0128 | 1 | r/w | Starting process duration output 12 group 2         |
| 0129 | 1 | r/w | PWM ratio during starting process output 12 group 2 |
| 012A | 1 | r/w | PWM ratio output 13, group 2                        |
| 012B | 1 | r/w | Starting process duration output 13 group 2         |
| 012C | 1 | r/w | PWM ratio during starting process output 13 group 2 |
| 012D | 1 | r/w | PWM ratio output 14, group 2                        |
| 012E | 1 | r/w | Starting process duration output 14 group 2         |
| 012F | 1 | r/w | PWM ratio during starting process output 14 group 2 |
| 0130 | 1 | r/w | PWM ratio output 15, group 2                        |
| 0131 | 1 | r/w | Starting process duration output 15 group 2         |
| 0132 | 1 | r/w | PWM ratio during starting process output 15 group 2 |
| 0133 | 1 | r/w | PWM ratio output 16, group 2                        |
|      |   |     |                                                     |



| 0134 | 1           | r/w             | Starting process duration output 16 group 2               |
|------|-------------|-----------------|-----------------------------------------------------------|
| 0135 | 1           | r/w             | PWM ratio during starting process output 16 group 2       |
| 0405 | Command     | byte = 1        |                                                           |
| 0105 | Start curre | ent measurement | for a valve                                               |
| 0106 | 1           | r/w             | Select valve to measure (1-16)                            |
| 0107 | 2           | r/w             | Desired duration of recording (Number of samples 1 – 800) |
| 0405 | Command     | byte = 2        |                                                           |
| 0105 | Retrieve m  | neasured ADC da | ta                                                        |
| 0106 | 1           | r/w             | Channel to use                                            |
| 0107 | 1           | r/w             | section of the ADC data: 0-79 (10 values of 2 bytes)      |
|      |             | PMB mode (info  | register bit 0 = 1)                                       |
| 0180 | 128         | r               | CFG/version for HW class (mem-address area)               |
| 0180 | 2           | r               | CRC16                                                     |
| 0182 | 2           | r               | Data length                                               |
| 0184 | 2           | r               | Firmware version µC1                                      |
| 0186 | 2           | r               | Firmware version µC2                                      |
| 0190 | 128         | r               | CFG/ADC for HW class (mem-address area)                   |
| 0190 | 2           | r               | CRC16                                                     |
| 0192 | 1           | r               | Data length                                               |
| 0193 | 1           | r               | Section of the ADC data                                   |
| 0194 | 2           | r               | First measurement value                                   |
| :    | :           |                 | :                                                         |
| 01A6 | 2           | r               | Tenth measurement value                                   |
| 0300 | 128         | r/w             | SDO access (mem-address range)                            |
| 0300 | 128         | w               | SDO request                                               |
| 0380 | 128         | r               | SDO return message                                        |
| 0380 | 128         | r               | SDO return message                                        |



## **11 Supported Cycle Times**

## 11.1 Cycle Times below 1 ms (in µs)

| FW    | 50 | 100 | 125 | 200 | 250 | 500 |
|-------|----|-----|-----|-----|-----|-----|
| V1.00 |    |     |     | х   |     | x   |

## 11.2 Cycle Times equal to or above 1 ms (in ms)

| FW    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| V1.00 | x | x | x | x | x | x | x | x | x | x  | x  | x  | x  | x  | x  | x  |

| FW    | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| V1.00 | x  | x  | x  | x  | x  | x  | x  | x  | x  | х  | x  | x  | x  | x  | x  | x  |

## 12 Transport/Storage



## INFORMATION

This device contains sensitive electronics. During transport and storage, high mechanical stress must therefore be avoided.

For storage and transport, the same values for humidity and vibration as for operation must be maintained!

Temperature and humidity fluctuations may occur during transport. Ensure that no moisture condenses in or on the device, by allowing the device to acclimate to the room temperature while turned off.

When sent, the device should be transported in the original packaging if possible. Otherwise, packaging should be selected that sufficiently protects the product from external mechanical influences. Such as cardboard filled with air cushioning.

## 13 Storage



#### INFORMATION

When not in use, store the operating panel according to the storage conditions. See chapter 12.

During storage, ensure that all protective covers (if available) are placed correctly, so that no contamination, foreign bodies or fluids enter the device.



## **14 Maintenance**

#### INFORMATION



During maintenance as well as servicing, observe the safety instructions from chapter 2 Basic Safety Directives.

### 14.1 Service

This product was constructed for low-maintenance operation.

### 14.2 Repair



INFORMATION

In the event of a defect/repair, send the device with a detailed error description to the address listed at the beginning of this document.

For transport conditions, see chapter 12 Transport/Storage.

## 15 Disposal

INFORMATION

i

Should you need to dispose of the device, the national regulations for disposal must be followed.

The device appliance must not be disposed of as household waste.





# 16 Hardware Class PW161

# Hardware Class PW161 for the S-DIAS PW161 valve output module

| 🚊 💾 SD: | IAS:56, <b>PW161 (PW1611)</b>                                         |
|---------|-----------------------------------------------------------------------|
| - S     | Class State (ClassState) <-[]->                                       |
| - S     | Device ID (DeviceID) <-[]->                                           |
| - S     | FPGA Version (FPGAVersion) <-[]->                                     |
| - S     | Hardware Version (HwVersion) <-[]->                                   |
| - S     | Serial Number (SerialNo) <-[]->                                       |
| - S     | Retry Counter (RetryCounter) <-[]->                                   |
| - O     | LED Control (LEDControl) <-[]->                                       |
| - S     | SDOState (SDOState) <-[]->                                            |
| - S     | Firmware Version µC1 (FirmwareVersion_uC1) <-[]->                     |
| - S     | Firmware Version µC2 (FirmwareVersion_uC2) <-[]->                     |
| 🗉 S     | Status Bits of µC (StatusBits_uC) <-[]->                              |
| I       | Voltage OK +24V1 (VoltageOk_V1) <-[]->                                |
| I       | Voltage OK +24V2 (VoltageOk_V2) <-[]->                                |
| I       | <pre>HighCurrent Output 1-8 (HighCurrent_Out1_8) &lt;-[]-&gt;</pre>   |
| I       | <pre>HighCurrent Output 9-16 (HighCurrent_Out9_16) &lt;-[]-&gt;</pre> |

#### PW 161 S-DIAS PULSE WIDTH MODULE



DelayTime Channel 1 (DelayTime\_Ch1) <-[]-> Output Channel 1 (Output\_Ch1) <-[]-> DelayTime Channel 2 (DelayTime\_Ch2) <-[]-> Output Channel 2 (Output\_Ch2) <-[]-> DelayTime Channel 3 (DelayTime\_Ch3) <-[]-> Output Channel 3 (Output\_Ch3) <-[]-> DelayTime Channel 4 (DelayTime\_Ch4) <-[]-> Output Channel 4 (Output\_Ch4) <-[]-> DelayTime Channel 5 (DelayTime\_Ch5) <-[]-> Output Channel 5 (Output\_Ch5) <-[]-> DelayTime Channel 6 (DelayTime\_Ch6) <-[]-> Output Channel 6 (Output\_Ch6) <-[]-> DelayTime Channel 7 (DelayTime\_Ch7) <-[]-> Output Channel 7 (Output\_Ch7) <-[]-> DelayTime Channel 8 (DelayTime\_Ch8) <-[]-> Output Channel 8 (Output\_Ch8) <-[]-> DelayTime Channel 9 (DelayTime\_Ch9) <-[]-> Output Channel 9 (Output\_Ch9) <-[]-> DelayTime Channel 10 (DelayTime\_Ch10) <-[]-> Output Channel 10 (Output\_Ch10) <-[]-> DelayTime Channel 11 (DelayTime\_Ch11) <-[]-> Output Channel 11 (Output\_Ch11) <-[]-> DelayTime Channel 12 (DelayTime\_Ch12) <-[]-> Output Channel 12 (Output\_Ch12) <-[]-> DelayTime Channel 13 (DelayTime\_Ch13) <-[]-> Output Channel 13 (Output\_Ch13) <-[]-> DelayTime Channel 14 (DelayTime\_Ch14) <-[]-> Output Channel 14 (Output\_Ch14) <-[]-> DelayTime Channel 15 (DelayTime\_Ch15) <-[]-> Output Channel 15 (Output\_Ch15) <-[]-> DelayTime Channel 16 (DelayTime\_Ch16) <-[]-> Output Channel 16 (Output\_Ch16) <-[]-> ALARM:00, Empty

This hardware class is used to control the PW 161 valve output module with 16 digital outputs. More information on the hardware can be found in the module documentation.

# 16.1 Interfaces

# 16.1.1 Clients

| SdiasIn | The client must be connected to an S-DIAS port, an "SdiasOut"_[x]" server.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | The physical location of the hardware module is entered in this client. Up to 64 modules, 0 to 63, can be assigned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | This client is active by default, which means that the S-DIAS hardware module at this position is mandatory for the system and can under no circumstances be disconnected or return an error. Otherwise, the entire hardware deactivated. If the hardware module is missing or removed, an S-DIAS error is triggered. If his client is initialized with 0, the hardware module located in this position is not mandatory. This means that it can be inserted or removed at any time. However, which components identified as "not required" should be selected with regard to the safety of the system. |

#### 16.1.2 Servers

| ClassState          | This server shows the actual status of the hardware class.                                                                                                             |                                                                                            |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| DeviceID            | The devic                                                                                                                                                              | e ID of the hardware module is shown in this server.                                       |  |
| FPGAVersion         | FPGA ve                                                                                                                                                                | rsion of the module in 16#XY (e.g. 16#10 = version 1.0).                                   |  |
| SerialNo            | The serial number of the hardware module is shown in this server.                                                                                                      |                                                                                            |  |
| RetryCounter        | This server increments when a transfer fails.                                                                                                                          |                                                                                            |  |
| LEDControl          | With this server, the application LED of the S-DIAS module can be activated<br>to find the module in the network more quickly. The following statuses are<br>possible: |                                                                                            |  |
|                     | 0                                                                                                                                                                      | LED off                                                                                    |  |
|                     | 1                                                                                                                                                                      | LED on                                                                                     |  |
|                     | 2                                                                                                                                                                      | blinks slowly                                                                              |  |
|                     | 3                                                                                                                                                                      | blinks rapidly                                                                             |  |
| SDOState            | The statu                                                                                                                                                              | s of the SDO transfer is shown in this server.                                             |  |
|                     | Ready                                                                                                                                                                  | Data transfer is complete.                                                                 |  |
|                     | Busy Data transfer is currently running.                                                                                                                               |                                                                                            |  |
|                     | Error                                                                                                                                                                  | An error has occurred during the data transfer                                             |  |
| FirmwareVersion_uC1 | The Firm                                                                                                                                                               | ware version of the micro controller shown in this server.                                 |  |
| FirmwareVersion_uC2 | The Firm                                                                                                                                                               | ware version of micro controller 2 is shown in this server.                                |  |
| StatusBits_uC       |                                                                                                                                                                        | erver, the status bits of both micro controllers are shown. The e bits mean the following: |  |
|                     | Bit 0                                                                                                                                                                  | DC voltage OK                                                                              |  |
|                     | Bit 1                                                                                                                                                                  | no Sync available                                                                          |  |
|                     | Bit 2                                                                                                                                                                  | Flash Data CRC Error                                                                       |  |
|                     | Bit 3                                                                                                                                                                  | Ram Data CRC Error                                                                         |  |
|                     | Bit 4                                                                                                                                                                  | invalid EEProm version                                                                     |  |
|                     | Bit 5                                                                                                                                                                  | output current too high                                                                    |  |
|                     | Bit 6                                                                                                                                                                  | current measurement active                                                                 |  |
|                     |                                                                                                                                                                        |                                                                                            |  |

# PW 161 S-DIAS PULSE WIDTH MODULE



| VoltageOk_V[1-2]          | The volta                                                                                                                                     | ge supply for output 1-8 and 9-16 is displayed in this server. |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
|                           | 0                                                                                                                                             | power supply error                                             |  |
|                           | 1                                                                                                                                             | power supply ok                                                |  |
| HigheCurrent_Out1-8, 9-16 | This server displays an over current for outputs 1-8 and 9-16.                                                                                |                                                                |  |
|                           | 0                                                                                                                                             | no over current                                                |  |
|                           | 1                                                                                                                                             | over current detected                                          |  |
| DelayTime_Ch[1-16]        | ] With this server, the delay time 1-16 is set to 100 µs after the next Sync for outputs 1-16. (Value from 0 – 255 [100 µs])<br>Output [1-16] |                                                                |  |
|                           | 0                                                                                                                                             | delayed cutoff                                                 |  |
|                           | 1 delayed turn on                                                                                                                             |                                                                |  |
| Output_Ch[1-16]           | Output_Ch[1-16] With this server, the outputs 1-16 is set with the specified delay time.                                                      |                                                                |  |
|                           | 0                                                                                                                                             | output turned off after the delay time                         |  |
|                           | 1                                                                                                                                             | output is turned on after the delay time                       |  |

# 16.1.3 Communication Interfaces

| ALARM Downlink | With this downlink the corresponding alarm class can be placed via the hardware editor. |
|----------------|-----------------------------------------------------------------------------------------|
|----------------|-----------------------------------------------------------------------------------------|

# **16.2 Global Methods**

#### 16.2.1 SetOutput

Function turns on an output with the specified delay time.

| Transfer parameters | Туре  | Description                                                                                  |  |
|---------------------|-------|----------------------------------------------------------------------------------------------|--|
| Channel             | USINT | Number of the output to which the pulse signal should be sent $(0 - 15$ for output 1 to 16). |  |
| SwitchOnDelay       | USINT | Delay time in increments of 0-255 [100 µs]                                                   |  |
| Return parameters   | Туре  | Description                                                                                  |  |
| retcode             | DINT  | Return code                                                                                  |  |
|                     |       | 1 OK                                                                                         |  |
|                     |       | -1 Output not available                                                                      |  |
|                     |       | -10 Hardware not ready                                                                       |  |
|                     |       | -11 Measuring currently active                                                               |  |

#### 16.2.2 ResetOutput

Function turns of an output with the specified delay time.

| Transfer parameters | Туре  | Description                                                                              |  |
|---------------------|-------|------------------------------------------------------------------------------------------|--|
| Channel             | USINT | Number of the output to which the pulse signal should be sent (0-15 for output 1 to 16). |  |
| SwitchOffDelay      | USINT | Delay time in increments of 0-255 [100 µs]                                               |  |
| Return parameters   | Туре  | Description                                                                              |  |
| retcode             | DINT  | Return code                                                                              |  |
|                     |       | 1 OK                                                                                     |  |
|                     |       | -1 Output not available                                                                  |  |
|                     |       | -10 Hardware not ready                                                                   |  |
|                     |       | -11 Measuring currently active                                                           |  |



#### 16.2.3 WriteGroupOutput

| Transfer parameters | Туре               | Descripti   | ion                        |
|---------------------|--------------------|-------------|----------------------------|
| pGroup1             | t_WriteSingleGroup | Pointer to  | the outputs 1-8            |
| pGroup2             | t_WriteSingleGroup | Pointer to  | the outputs 9-16           |
| Return parameters   | Туре               | Descripti   | ion                        |
| retcode             | DINT               | Return code |                            |
|                     |                    | 1           | ОК                         |
|                     |                    | -7          | Pointer is invalid         |
|                     |                    | -10         | Hardware not ready         |
|                     |                    | -11         | Measuring currently active |

Function changes all outputs with a call.

#### 16.2.4 ChangePWMSettings

The function sets the PWM for the respective output. Settings can be made for multiple outputs. The settings are then sent via SDO's in the next cycle.

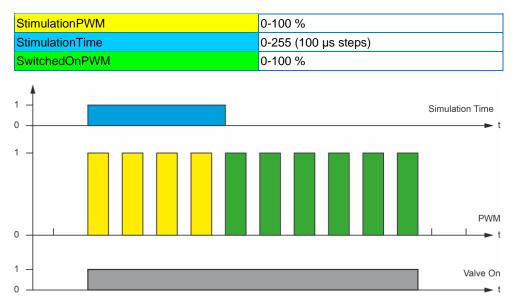
| Transfer parameters                | Туре  | Description                                                                              |
|------------------------------------|-------|------------------------------------------------------------------------------------------|
| Channel                            | USINT | Number of the output to which the pulse signal should be sent (0-15 for output 1 to 16). |
| StimulationPWM                     | USINT | PWM in percent during on time (0-100 %)                                                  |
| StimulationTime                    | USINT | On time in increments of 0-255 [100 µs]                                                  |
| SwitchedOnPWM                      | USINT | PWM in percent while the output is on (0-100 %)                                          |
| Return parameters Type Description |       | Description                                                                              |
| retcode                            | DINT  | Return code                                                                              |
|                                    |       | 1 OK                                                                                     |
|                                    |       | -1 Output not available                                                                  |
|                                    |       | -3 StimulationPWM can be set from 0-100 % only                                           |
|                                    |       | -4 Can be set from 0-255 only                                                            |
|                                    |       | -5 SwitchedOnPWM can be set from 0-100 % only                                            |

#### 16.2.5 StartMeasure

Function measures the time of a specific output. All outputs are turned off automatically and are not automatically restarted. The measured values are 2-byte values in 100 µs increments. If all possible values are recorded, 1600 bytes are required.

| Transfer parameters       | Туре         | Description                                                                                                                                                                                                                                                       |
|---------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel                   | USINT        | Number of the output to which the pulse signal should be sent $(0 - 15$ for output 1 to 16).                                                                                                                                                                      |
| pData                     | ^VOID        | Pointer to a memory area in which the values should be<br>stored. This area must be large enough so that the data<br>volume defined in MaxDataLength has sufficient space.<br>The transferred measurement values are to be considered<br>as 2-byte signed values. |
| MaxDataLength             | UDINT        | Specifies the number of measurement points to record.<br>Maximal 1600 bytes (corresponds to 800 values per every<br>2bytes).                                                                                                                                      |
| CloseDelay                | UINT         | Specifies how long the output remains active after the measurement. The transfer value corresponds to the delay in 100 microsecond steps.                                                                                                                         |
| Mode                      | USINT        | Defines the mode of the measurement value transfer and calculation.                                                                                                                                                                                               |
|                           |              | 0 Measurement values are transferred as 1-<br>byte value. However, the values are only<br>cleaned-up through the adjustment offset<br>and the value is shortened to an 8-bit value<br>(8LSB are transferred).                                                     |
|                           |              |                                                                                                                                                                                                                                                                   |
|                           |              | 1 Measurement values are transferred as 2-<br>byte value and are completely adjusted and<br>scaled.                                                                                                                                                               |
| Return parameters         | Туре         | byte value and are completely adjusted and                                                                                                                                                                                                                        |
| Return parameters retcode | Type<br>DINT | byte value and are completely adjusted and scaled.                                                                                                                                                                                                                |
|                           |              | byte value and are completely adjusted and scaled. Description                                                                                                                                                                                                    |
|                           |              | byte value and are completely adjusted and<br>scaled.<br>Description<br>Return code                                                                                                                                                                               |
|                           |              | byte value and are completely adjusted and scaled.           Description           Return code           1         OK                                                                                                                                             |
|                           |              | byte value and are completely adjusted and scaled.       Description       Return code       1     OK       -1     Output not available                                                                                                                           |
|                           |              | byte value and are completely adjusted and scaled.       Description       Return code       1     OK       -1     Output not available       -2     Supply voltage is not ok                                                                                     |
|                           |              | byte value and are completely adjusted and scaled.       Description       Return code       1     OK       -1     Output not available       -2     Supply voltage is not ok       -7     Pointer is invalid                                                     |




# 16.2.6 GetMeasureState

Function reads the status of the StartMeasure function.

| Return parameters | Туре      | Description                                                                        |
|-------------------|-----------|------------------------------------------------------------------------------------|
| retcode           | IprStates | Return code                                                                        |
|                   |           | Ready Measurement is complete and the data was copied to the assigned memory area. |
|                   |           | Busy Measuring and data transfer currently running.                                |
|                   |           | Error An error has occurred during the data transfer.                              |

# 16.3 Software Configuration

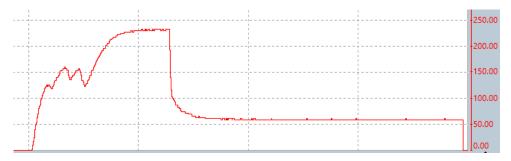
The configuration is done via the method interfaces of the hardware class. The method "ChangePWMSettings()" offers the following parameters for each channel:



These setting parameters make it possible to control the valve as energy-saving as possible.

The valve needs a little more current in the tightening phase. Then a lower holding current is sufficient. In order to supply the required energy for the starting current, the PWM is initially set "higher" as a percentage than in the holding current phase. The time can be determined e.g. with an oscilloscope with current clamp.

The actual on/off switching of the valve is then controlled at runtime via the functions SetOutput() and ResetOutput() or via the function WriteGroupOutput().

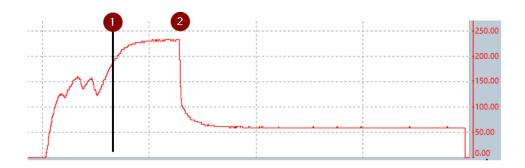



#### 16.4 Current History Recording

As an alternative to an oscilloscope measurement, the measurement system implemented in the module can be used.

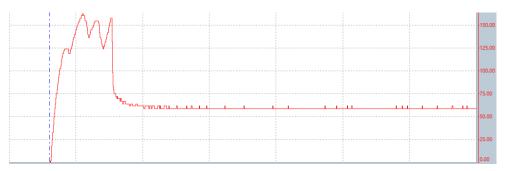
For this the methods "StartMeasure()" and "GetMeasureState()" are to be used.

The method StartMeasure() draws up to 800 measuring points (one measuring point every 100 µs).




The StimulationTime should be selected so long that the valve is safely switched on.

#### 16.4.1 Analysis of the Measured Values


The current rises rapidly at the switch-on time, the first 3 "dips" are due to a settling time of the armature. The subsequent current rise can now be intercepted by lowering the current into the holding current.

Our recommendation would be to change to the holding current at time 1 (approx. 115 ticks). A current, as it is lowered here at time 2, would then level off.



#### 16.4.2 Testing the Setting Values

A test in which the PWM is changed from 100 % to 50 % after 115 ticks now shows a significantly reduced energy consumption.





# **Documentation Changes**

| Change date | Affected page(s) | Chapter                           | Note                                                                      |
|-------------|------------------|-----------------------------------|---------------------------------------------------------------------------|
| 26.03.2015  | 7                | 3.2 Applicable Connectors         | Added connections                                                         |
| 20.04.2015  | 9                | 4.2 Output Scheme                 | New chapter                                                               |
| 22.09.2015  | 3                | 1.1 Valve Output<br>Specification | Execution added                                                           |
| 06.10.2015  | 3                | 1.1 Valve Output<br>Specification | Short-circuit proof Note added                                            |
| 20.10.2015  | 3                | 1.1 Valve Output<br>Specification | Footnote added                                                            |
|             |                  | 4.1 Wiring Examples               | Example added                                                             |
| 28.04.2016  | 14               | 5 Mounting                        | Graphics distances                                                        |
| 08.05.2017  | 17, 18, 19       | 6 Addressing                      | Explanations corrected                                                    |
| 17.08.2017  | 6                | 1.5 Environmental Conditions      | Added operating conditions                                                |
|             | 9                | 3.2 Applicable Connectors         | Added sleeve length<br>Added info regarding ultrasonically welded strands |
| 18.10.2017  | 10               | 3.3 Label Field                   | Added chapter                                                             |
|             | 15               | 5 Mounting                        | Graphic replaced                                                          |
| 20.09.2018  |                  | 3 Connector Layout                | Note added                                                                |
| 18.07.2019  | 21               | 7 Supported Cycle Times           | Chapter added                                                             |
| 08.09.2020  | 23               | 8 Hardware Class PW161            | Chapter added                                                             |
| 04.11.2020  | 15               | 5 Mounting                        | Expansion functional ground connection                                    |
| 06.12.2022  | 7                | 1.4 Miscellaneous                 | UKCA conformity                                                           |
| 20.04.2023  | 9                | 3 Connector Layout                | Info box corrected                                                        |
| 13.07.2023  | 14               | 4.3 Note                          | Note length supply lines added                                            |
| 26.07.2023  |                  | Document                          | General chapters added, design                                            |