

VARAN Client Board

VEB 011/012

Versatile Automation Random Access Network

This client board provides a simple method of connecting any periphery modules to the VARAN bus.

Technical Data

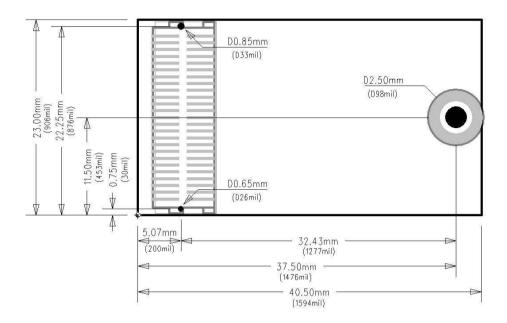
Performance Data

Internal memory	Serial 4-MBit-Flash
Interfacing	1 x VARAN (Client) (maximum length: 100 m) 1 x Periphery interface
Connection to periphery mod- ule	Over 50-pin. Board-to-Board- connector plug, 0,8 mm spacing (Type ERNI Microstac, order no.: 114713)

Electrical Requirements

Internal supply voltage (VDD)	Typically +3,3 V DC (±4 %) (Supplied by the periphery module over the 50-pin connector plug)
Current consumption of the voltage supply	Minimum 250 mA (Depending on the external circuit)

Miscellaneous


	VEB 011	VEB 012
Article number	16-081-011	16-081-012
Hardware version	1.x	1.x

Environmental Conditions

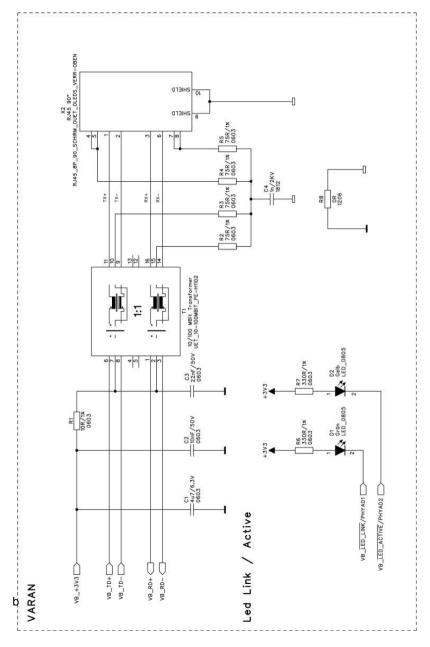
Storage temperature	-20 – +85 °C			
Operating temperature ¹⁾	VEB 011	VEB 012		
	0 – 70 °C	0 – 85 °C		
	VEB 011/012			
Humidity	0 – 95 %, uncondensed			
EMV stability	2)			
Shock resistance	EN 60068-2-27 150 m/s ²			

¹⁾ The operating temperature of the entire unit must be defined individually for each application since the operating conditions (mounting position, housing, and heat source in the vicinity of the module) are not known. ²⁾ The EMV stability has to be tested separately in the complete system for each application.

Mechanical Dimensions

The dimensioning of the center holes of the 50-pole ERNI Board-to-Board connector is effective for the plugs on the base board (doesn't show the position of the connectors on the VEB).

The VEB is shown from the connector back side in this illustration.


The height of the component parts on the base board under the VEB must not exceed 3 mm.

Connector Layout

12	Pin	Xilinx Identifier	Bus Mode		DPRAM Mod	e	IO Mode	
	1		GND		GND		GND	
	2		GND		GND		GND	
	3	V2	D0	IO	D0	IO	IN9	IN
	4	V1	-		-		OUT9	OUT
	5	V4	D1	IO	D1	IO	IN10	IN
= =	6	V3	-		-		OUT10	OUT
	7	V6	D2	IO	D2	IO	IN11	IN
	8	V5	-		-		OUT11	OUT
	9	V8	D3	10	D3	10	IN12	IN
	10	V7	-		-		OUT12	OUT
	11	V10	D4	10	D4	10	IN13	IN
	12	V9	-	10	-	10	OUT13	OUT
	13	V12	D5	IO	D5	IO	IN14	IN
	14	V11	Mode0	IN IO	Mode0	IN	Mode0	IN
	15	V14	D6 Mada1	IN	D6 Mada1	IO IN	IN15	IN IN
	16 17	V13	Mode1 D7	IN	Mode1 D7	IN	Mode1	IN
	17	V16 V15	Mode2	IN	Mode2	IN	IN16 Mode2	IN
	10	V15	VDD	IIN	VDD	IIN	VDD	IIN
	20		VDD		VDD		VDD	
	20		GND		GND		GND	
	22	V17	Ready	IN	-		-	
	23	VII	Phy_RX+		Phy_RX+		Phy_RX+	
	24	V18	Sync	OUT	Sync	OUT		
	25	10	Phy_RX-		Phy_RX-		Phy_RX-	
	26	V19	A0	OUT	A0	OUT	IN1	IN
	27	-	Phy_TX+		Phy_TX+		Phy_TX+	
	28	V20	A1	OUT	A1	OUT	IN2	IN
	29		Phy_TX-		Phy_TX-		Phy_TX-	
	30	V21	A2	OUT	A2	OUT	IN3	IN
	31		VB +3V3		VB +3V3		VB +3V3	
	32	V22	A3	OUT	A3	OUT	IN4	IN
	33	V24	CLK 25 MHz	OUT	CLK 25 MHz	OUT	CLK 25 MHz	OUT
	34	V23	A4	OUT	A4	OUT	IN5	IN
	35	V26	/Periphery Reset	OUT	/Periphery Reset	OUT	/Periphery Reset	OUT
	36	V25	A5	OUT	A5	OUT	IN6	IN
	37	V28	-	0.UT	-	0. IT	-	
	38	V27	A6	OUT	A6	OUT	IN7	IN
	39	V30	R/W	OUT	R/W	OUT	OUT8	OUT
	40	V29	A7	OUT	A7	OUT	IN8	IN OUT
	41 42	V32 V31	- A8	OUT	- A8	OUT	OUT6 OUT7	OUT
	42	V31		001	-	001	/Phy_led_link	001
	43	V33	/Phy_led_link A9	OUT	/Phy_led_link A9	OUT	OUT5	OUT
	44 45	V33	/Phy_led_active	001	/Phy_led_active	001	/Phy_led_active	001
	45	V34	A10	OUT	A10	OUT	OUT4	OUT
	40	V34 V36	/CS Hex Switch	001	/CS Hex Switch	001	OUT2	OUT
	48	V35	A11	OUT	A11	OUT	OUT3	OUT
	40	100	GND	001	GND	001	GND	001
	50	V37	/CS	OUT	/CS	OUT	OUT1	OUT
	50	v3/	/03	001	100	001	0011	

VEB 011/012

Electrical bonding

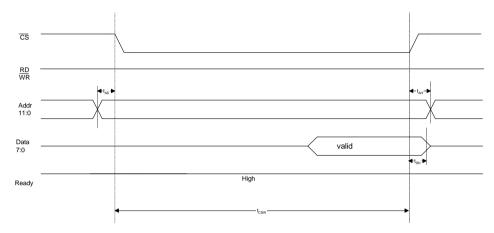
Layout guidelines

- Place blocking capacitors with 100 nF to the supply pins (+3V3) of the Board-to-Board connectors.
- The distance between the transformer (Pulse H1102NLT) and the RJ45 plug connector has to be kept to a minimum (<25 mm)</p>
- The distance between the transformer and the 50-pole VEB plug should not exceed 50mm, if possible.
- The VARAN differential lines TD+/TD- and RD+/RD- are
 - as short as possible
 - parallel
 - of same length
 - ... to route
- > Furthermore differential lines should have the following properties:
 - Distance between two differential line pairs >0,38 mm
 - Distance of the differential lines to the circuit board angles >25 mm
 - Distance of the differential lines to other signals >0,76 mm
 - Continuous GND area under the differential lines
 - Do not cross differential lines with other signals
 - Do not route differential lines under components

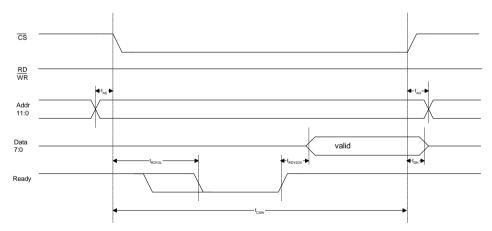
Mode Register

The mode pins (v11, v13, v15) are latched in the FPGA and the selected mode can be read out from the register. Following modes are defined:

V15	V13	V11	Mode
0	0	0	"000" Bus Mode
0	0	1	"001" IO Mode
0	1	0	"010" DPRAM Mode

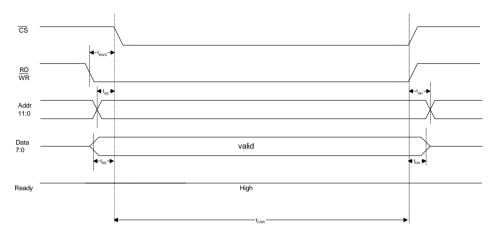

Bus Mode

In the Bus mode the VEB 011 is the bus master. The Sync signal is the output of the PLL (sync out 0) – see VARAN Bus specification. This signal can be used for synchronisation of the periphery.

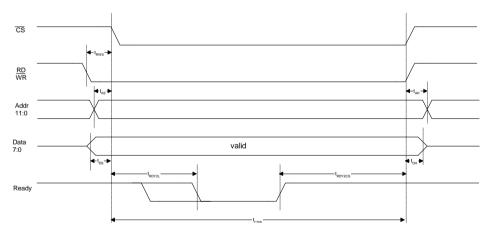

Name	Description	Port	Pins (0 to)
А	Address (12 bit)	out	V19, 20, 21, 22, 23, 25, 27, 29, 31, 33, 34, 35
D	Data (8 bit)	inout	V2, 4, 6, 8, 10, 12, 14, 16
R/W	Read/Write	out	V30
CS	Chip select	out	V37
Sync	Sync	out	V18
Ready	Ready	in	V17

Timing Diagram

Read (without wait states)



Read (with wait states)



VEB 011/012

Write (without wait states)

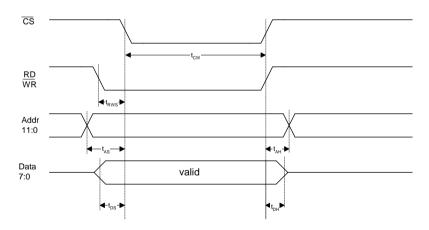
Write (with wait states)

Timing	Time (ns)		Description
' i i i i i i i i i i i i i i i i i i i	min.	max.	Description
t _{CSW}	220	-	Chip select low width
t _{RWS}	5	-	Read write setup time
t _{AS}	5	-	Address setup time
t _{DS}	5	-	Data setup time
t _{DH}	0	-	Data hold time
t _{AH}	5	-	Address hold time
t _{RDY2L}	120	-	Chip select to ready low time
t _{RDY2DV}	-	5	Ready to data valid time
t _{RDY2CS}	60	-	Ready to chip select

Timing Characteristics

DPRAM Mode

In the DPRAM mode the VEB 011 is the bus client. An external bus master can access the DPRAM in the FPGA. The DPRAM is organized in 4096 x 8 bits on both sides. The Sync signal is the output of the PLL (sync out 0) – see VARAN Bus specification. This signal can be used for synchronisation of the periphery.


Name	Description	Port	Pins (0 to)
A	Address (12 bit)	in	V19, 20, 21, 22, 23, 25, 27, 29, 31, 33, 34, 35
D	Data (8 bit)	inout	V2, 4, 6, 8, 10, 12, 14, 16
R/W	Read/Write	in	V30
CS	Chip select	in	V37
Sync	Sync	out	V18

Timing Diagram

Read

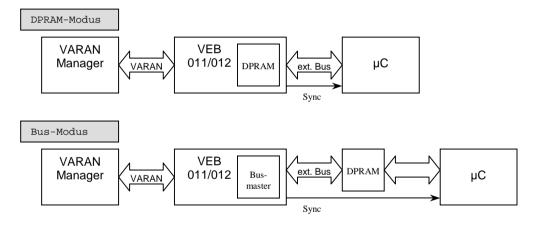
Write

Timing Characteristics

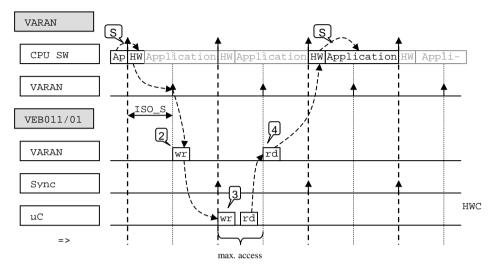
Timing	Time (ns)		Description
rinning	min.	max.	Description
t _{cw}	55	-	Chip select to end of write
t _{RWS}	0	-	Read write setup time
t _{AS}	0	-	Address setup time
t _{DS}	0	-	Data setup time
t _{DH}	0	-	Data hold time
t _{AH}	0	-	Address hold time
t _{DV}	-	70	Chip select to data valid time

Read Hex Switch

After switch-on the FPGA reads in the hex switches in Bus Mode and DPRAM Mode. During this process the periphery remains in reset.


The read hex switches are stored in the varan configuration register.

Name	Description	Port	Pins (0 to)
Hex Switch	Hex Switch	inout	V2, 4, 6, 8, 10, 12, 14, 16
	(8 bit)		
CS	Chip select	out	V36


VEB 011/012 Time response

A DPRAM gives a microcomputer the option of exchanging data with the VARAN system. For this, the VEB 011/012 provides two variations, one that uses the FPGA internal DPRAM and another for an external DPRAM. So that data consistency in the 4-kbyte DPRAM is ensured, the microcomputer must be synchronized with the VARAN bus and can only exchange data in the allowed time window. The Sync signal gives the microcomputer permission to access the DPRAM. The data exchange must then be completed within half the VARAN system time to avoid generating inconsistent data.

Block Diagram

Time diagram

Hardware Class

SW	=> Software
wr	=> Write
rd	=> Read
ISO_S	=> ISO Start point (adjustable from 10 – 90 %)

Zeitliches Verhalten am VEB011/012

- 1 HW Class writes to DO RAM
- 2 VARAN writes to DPRAM
- 3 μ C writes and reads DPRAM
- 4 VARAN read from DPRAM
- 5 HW Class reads from DO RAM

500 µs (half Cycle@1ms Cycle time)

500 µs (half Cycle@1ms Cycle time)

VEB 011/012

Addressing

Address (hex)	Size (Byte)	Access type	Description	Reset value		
Memory						
0000	528	-	Reserved			
0210	1	r	VEB011 Mode Register Bit 0 2: Mode Bit 3 7: Reserved "000" Bus mode "001" IO mode "010" DPRAM mode	00		
0211	15	-	Reserved			
0220	1	w	Digital Out Register Bit 0: OUT1 Bit 1: OUT2 Bit 2: OUT3 Bit 3: OUT4 Bit 4: OUT5 Bit 5: OUT6 Bit 6: OUT7 Bit 7: OUT8 (Access only allowed in IO mode)	00		
0220	1	r	Digital Input Register Bit 0: IN1 Bit 1: IN2 Bit 2: IN3 Bit 3: IN4 Bit 4: IN5 Bit 5: IN6 Bit 6: IN7 Bit 7: IN8 (Access only allowed in IO mode)			
0221	1	w	Digital Out Register Bit 0: OUT9 Bit 1: OUT10 Bit 2: OUT11 Bit 3: OUT12 Bit 4: OUT13 Bit 5 7: Reserved (Access only allowed in IO mode)	00		
0221	1	r	Digital Input Register Bit 0: IN9 Bit 1: IN10 Bit 2: IN11 Bit 3: IN12 Bit 4: IN13 Bit 5: IN14 Bit 6: IN15 Bit 7: IN16 (Access only allowed in IO mode)			

VARAN CLIENT BOARD

VEB 011/012

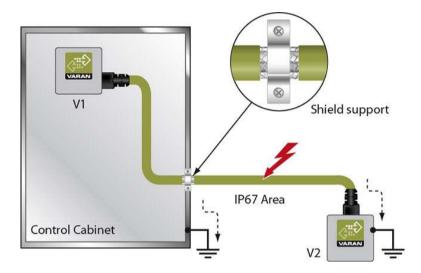
0222	3550	-	Reserved	
1000	4096	r/w	Bus Master (Access only allowed in Bus mode) Note: These registers have a slower processing time of the VARAN client. t _{client} = 230 ns + 300 ns/byte (see VARAN Bus timing in the VARAN Bus specification)	
2000	4096	r/w	DPRAM (Access only allowed in DPRAM mode)	

More information on the VARAN bus can be found in the VARAN bus specifications!

VARAN Recommended Shielding

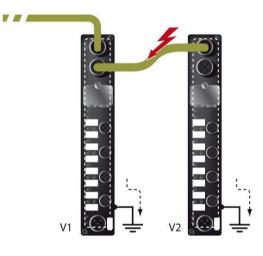
The VARAN real-time Ethernet bus system offers robust performance in harsh industrial environments. Through the use of IEEE 802.3 standard Ethernet physics, the potential between an Ethernet line and sending/receiving components is kept separate. The VARAN Manager resends messages to a bus participant immediately when an error occurs. It is principally recommended that the shielding guidelines below be followed.

For applications in which the bus line is run outside the control cabinet, correct shielding is required. This is especially important, if due to physical requirements, the bus lines must be placed next to sources of strong electromagnetic noise. It is recommended that whenever possible, to avoid wiring VARAN-Bus lines parallel to power cables.

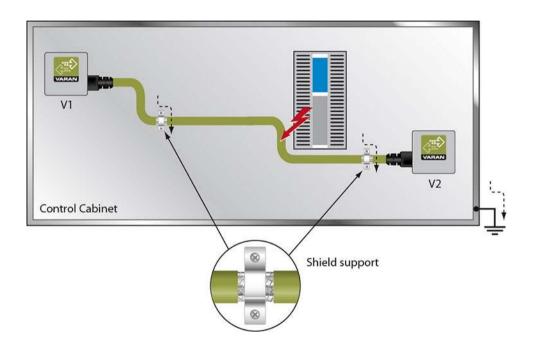

SIGMATEK recommends the use of **CAT5e** industrial Ethernet bus lines.

For the shielding variants, an S-FTP bus line is recommended, which is a symmetric, multiwire cable with unshielded pairs. For the total shielding, a combination of foil and braiding is used; it is recommended that an unvarnished variant be used.

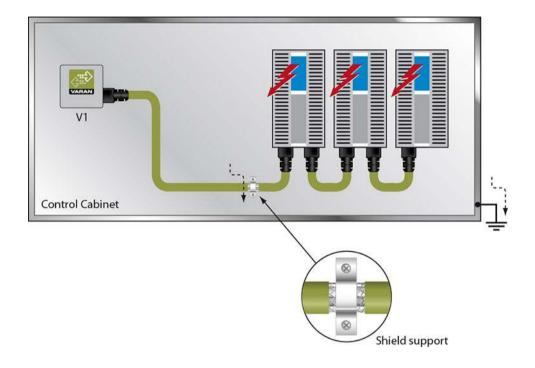
The VARAN cable must be secured at a distance of 20 cm from the connector for protection against vibration!


1. Wiring from the Control Cabinet to an External VARAN Component

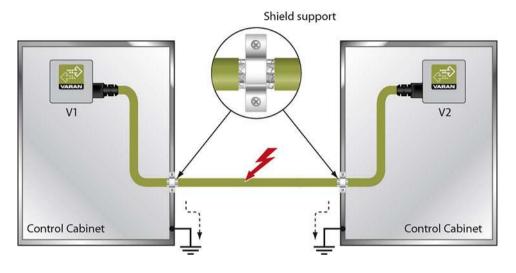
If the Ethernet lines are connected from a VARAN component to a VARAN node outside the control cabinet, the shielding should be placed at the entry point to the control cabinet housing. All noise can then be deflected from the electronic components before reaching the module.


2. Wiring Outside of the Control Cabinet

If a VARAN bus cable must be placed outside of the control cabinet only, no additional shield connection is required. This requires that only IP67 modules and connectors be used. These components are very robust and noise resistant. The shielding for all sockets in IP67 modules are internally connected to common bus or electrically connected to the housing, whereby the deflection of voltage spikes does not flow through the electronics.


3. Shielding for Wiring Within the Control Cabinet

Sources of strong electromagnetic noise located within the control cabinet (drives, Transformers, etc.) can induce interference in a VARAN bus line. Spike voltages are deflected over the metallic housing of a RJ45 connector. Noise is conducted through the control cabinet housing without further action from the electronic components To eliminate sources of noise during data transfer, it is recommended that the shielding from all electronic components be connected within the control cabinet.


4. Connecting Noise-Generating Components

With the connection of power components that generate strong electromagnetic noise, it is also critical to ensure correct shielding. The shielding should be placed before a power component (or a group thereof).

5. Shielding Between Two Control Cabinets

If two control cabinets must be connected over a VARAN bus, it is recommended that the shielding be located at the entry points to both cabinets. Noise can thereby be kept from reaching the electronics within the control cabinet.

